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CHAPTER I

INTRODUCTION

The program of systematic study of the algebraic properties of graphs, and rela-

tions in general, was carried out by K. Čuĺık, G. Sabidussi, Z. Hedrĺın and A. Pultr.

This approach led undoubtedly to success in applications of algebra and graph theory

to various branches of mathematics. As part of this effort, V. Müller, J. Nešetřil and

J. Pelant undertook the study of tournaments—a class of directed graphs that are

basically the same as algebras of a certain kind (see [20]). By a tournament we mean

a directed graph 〈T ;→〉 with all loops, such that whenever x and y are two distinct

elements of T , then precisely one of the two cases, either x→ y or y → x, takes place.

Already in 1965, Z. Hedrĺın observed that a tournament 〈T ;→〉 can be made into a

groupoid 〈T ; ·〉, an algebra with a single binary operation, by defining xy = yx = x

if and only if x → y. This correspondence between the class of all tournaments and

the class of all commutative groupoids 〈T ; ·〉 satisfying xy ∈ {x, y} for all x, y ∈ T is

clearly a bijection. A moment of thought is enough to check that the graph homo-

morphisms and the algebraic homomorphisms are also in one-to-one correspondence

and actually coincide. This makes it possible to identify tournaments with their

corresponding groupoids and employ algebraic methods for their investigation.

Simple tournaments were studied in a different context by P. Erdős, E. Fried,

A. Hajnal, E. C. Milner and J. W. Moon in [3], [4] and [18]. One of their main

theorems states that (with the exception of chains with an odd number of elements)

every tournament can be extended to a simple tournament by adding a single vertex.

In [20], V. Müller, J. Nešetřil and J. Pelant characterize all finite lattices, called

admissible lattices, that are isomorphic to the congruence lattice of a tournament,

and sharpen a result of J. W. Moon [19] on the automorphism groups of tournaments.
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Furthermore, they show that given an admissible lattice L, an odd group G, and a

tournament T, there exists a tournament whose congruence lattice is isomorphic to

L, whose automorphism group is isomorphic to G, and that has a subtournament

isomorphic to T. This proves that, for tournaments, the congruence lattice and the

group of automorphisms are independent.

One can easily check that tournaments satisfy, for example, the following equa-

tions.

(1) xx = x

(2) xy = yx

(3) (xy)x = xy

(4) ((xy)(xz))((xy)(yz)) = (xy)z

On the other hand, the associative law is not satisfied, which can be verified in the

three element cycle. In order to avoid too many parentheses, we adopt the following

convention: a0a1 . . . an−1 stands for (((a0a1)a2) . . . )an−1, and a · bc stands for a(bc).

Also, for example, ab · cd · ef = ((ab)(cd))(ef).

It is natural to ask whether a list of equations like the one above is complete, in

the sense that any equation satisfied by all tournaments would be derivable from the

equations in the list. To answer this and similar questions, one needs to investigate

not only tournaments in isolation, but the variety T of groupoids generated by tour-

naments. This leads outside the realm of graphs, as there are algebras in T which are

not tournaments. Nonetheless, we can define a directed graph 〈A;→〉 on each algebra

A ∈ T by writing x→ y if and only if xy = x. For example, the direct square of the

two element tournament is a semilattice, but not a tournament, because ab 6∈ {a, b}

(see Fig .1). We call pairs x, y of elements incomparable if xy 6∈ {x, y}.

In [2], [14] and [13], it has been proved that the variety T generated by tour-

naments is locally finite, non-finitely based, inherently non-finitely generated, and
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a · b

ba

Figure 1: The direct square of the two element tournament

congruence meet-semidistributive. In the study of T , R. McKenzie conjectured that

all subdirectly irreducible members of T are tournaments (see [14]). Several par-

tial results were obtained in this direction by J. Ježek, P. Marković, M. Maróti and

R. McKenzie in [13], [11] and [15], but a proof of this conjecture remained out of

reach. The main result of this dissertation establishes the truth of this conjecture.

As the properties of subdirectly irreducible members of any variety greatly influence

the properties of the variety itself, it was not very surprising that we found numerous

consequences of this result. We prove that every finitely generated subvariety of T

has a finite residual bound and is finitely based. The lattice of subvarieties of T is

distributive, and we can describe the partially ordered set of join-irreducible mem-

bers of this lattice. Finally, we give a representation theorem for all finite subdirectly

irreducible members of T modulo simple tournaments.

Tournaments can be identified with algebras in two different ways. The approach

to consider them as groupoids was taken, for example, in [9], [13], [14], [20] and

in the present dissertation. Alternatively, tournaments can be also identified with

algebras with two binary operations x ·y and x+y, where x ·y is defined as above and

x+ y = x+ y = y if and only if x→ y. This approach was taken, for example, in [5]

and [6]. For tournaments themselves the difference is not significant. But, if we want

to consider the variety generated by tournaments, we get different results for the two
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cases. For example, in the case of two binary operations, the variety generated by

tournaments is contained in the variety of weakly associative lattices, and hence is

congruence distributive (see [5]), in contrast to the fact that T is only congruence

meet-semidistributive.

In the next chapter we review the basics of universal algebra that is essential for

the understaning of the material in later chapters. Chapters III and IV collect some

of the results published in [13], [14] and [11]. In Chapter V we present our main

result, the proof of R. McKenzie’s conjecture. Finally, in Chapter VI, we give some

consequences of this result.
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CHAPTER II

UNIVERSAL ALGEBRAIC BACKGROUND

The reader is referred to the excellent books [1] and [17] on universal algebra and

equational theory. Some of the facts that are essential for the understanding of our

results are recalled here.

We will assume the familiarity with the most basic notions of set theory. We use

upper-case Latin letters to denote sets, and lower-case letters to denote elements of

sets and integers. Let n be a non-negative integer. By an n-ary operation on a set

A we mean a mapping of An to A, and by an n-ary relation on a set A, a subset

of An. We call a nonvoid set A endowed with an indexed set F = { fA

i : i ∈ I } of

operations, an indexed set R = { rAj : j ∈ J } of relations, or both, an algebra 〈A;F 〉,

a relational structure 〈A;R〉, or an algebraic structure 〈A;F,R〉, respectively. This

concept includes groups, rings, graphs (with no multiple edges), lattices, partially

ordered sets and many other algebraic systems of interest in mathematics. We use

boldface, upper-case letters to denote algebras and structures, and normal-font, lower-

case letters or special symbols to denote operations and relations. For operations

fA ∈ F and relations rA ∈ R we usually write f and r, respectively, if the algebra

or structure A in question is known, and no confusion is likely to arise. We call

an algebra A = 〈A; ·〉 with a single binary operation · a groupoid, and a relational

structure B = 〈B;→〉 with a single binary relation → a directed graph (with no

multiple edges). For binary operations and relations denoted by special symbols we

use infix notation.

For a set A define idA = { 〈a, a〉 : a ∈ A }. We call a binary relation % ⊆ A2

reflexive if idA ⊆ %, symmetric if 〈a, b〉 ∈ % whenever 〈b, a〉 ∈ %, antisymmetric if

〈a, b〉 /∈ % whenever 〈b, a〉 ∈ % and a 6= b, and transitive if 〈a, c〉 ∈ % whenever 〈a, b〉 ∈ %
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and 〈b, c〉 ∈ %. A binary relation is a preorder if it is reflexive and transitive; a partial

ordering if it is reflexive, antisymmetric and transitive; and an equivalence relation if

it is reflexive, symmetric and transitive. For an equivalence relation % on A, the sets

a/% = { b ∈ A : 〈a, b〉 ∈ % }, for all a ∈ A, are called the blocks of %. A partition of A

is a set {A0, . . . , Ak−1} of pairwise disjoint subsets of A such that A = A0∪· · ·∪Ak−1.

Clearly, equivalence relations of A can be identified with partitions of A. For a partial

ordering ≤ on a set A we use the notation a < b for a ≤ b and a 6= b, and a ≺ b for

a < b but for no c ∈ A does a < c < b hold. Finite partially ordered sets (posets) can

be pictured by Hasse diagrams, with the elements depicted as points on a plane, larger

elements corresponding to higher points, and the covering relation (≺) represented

by ascending straight line segments.

A groupoid A is idempotent if aa = a for all a ∈ A; commutative if ab = ba for all

a, b ∈ A; associative if a(bc) = (ab)c for all a, b, c ∈ A; and conservative if ab ∈ {a, b}

for all a, b ∈ A. Commutative conservative groupoids are called tournaments, as de-

scribed in the introduction. A semilattice is an idempotent, commutative, associative

groupoid. Given a semilattice A, one can define a partial ordering ≤ on A by letting

a ≤ b if and only if ab = a. A poset 〈A;≤〉 is correlated with a semilattice in this

fashion if and only if every pair of elements of A has a greatest lower bound with

respect to ≤.

A lattice is an algebra 〈A;∧,∨〉 with two binary operations such that both 〈A;∧〉

and 〈A;∨〉 are semilattices and for all x, y ∈ A, x∧y = x if and only if x∨y = y. Thus,

the partial orderings correlated with 〈A;∧〉 and 〈A;∨〉 are the inverses of each other.

A poset 〈A;≤〉 is correlated with a lattice in this fashion if and only if every pair of

elements of A has a greatest lower and a least upper bound with respect to ≤. If a

lattice is finite, then it has a largest and smallest element, usually denoted by 1 and

0, respectively. If a lattice has a smallest element 0, then its covers are called atoms.

A lattice A is distributive if it satisfies the identity x∧ (y∨ z) = (x∧ y)∨ (x∧ z). We

6



call A meet semi-distributive, if whenever elements x, y, z ∈ A satisfy x ∧ y = x ∧ z,

they also satisfy x ∧ (y ∨ z) = x ∧ y. An element a ∈ A is called join irreducible, if

for all elements x, y ∈ A, a = x ∨ y implies that a = x or a = y. Meet irreducible

elements are defined analogously.

Let A = 〈A;F 〉 be an algebra. A binary relation % ⊆ A2 is compatible with A

if 〈f(a0, . . . , an−1), f(b0, . . . , bn−1)〉 ∈ % for all operations f ∈ F and for all choices

of pairs 〈a0, b0〉, . . . , 〈an−1, bn−1〉 ∈ %. Compatible equivalence relations are called

congruences. We will typically use lower-case Greek letters to denote congruences.

The set of congruences of A forms a lattice, denoted by ConA. The smallest and

largest congruences of A are 0A = idA and 1A = A2, respectively. The meet α∧ β of

two congruences α, β ∈ ConA is their intersection α ∩ β, while the join α ∨ β is the

least equivalence relation extending the set α ∪ β. For a pair 〈a, b〉 ∈ A2, denote by

CgA(a, b) the least congruence of A containing 〈a, b〉. An algebra A is called simple if

ConA is a two element lattice. This holds if and only if A has at least two elements

and has no congruences other than the trivial ones: 0A and 1A. An algebra A is

called subdirectly irreducible if ConA has a congruence µ 6= 0A, called the monolith,

such that for every congruence α ∈ ConA either α = 0A or µ ≤ α. Thus 0A is meet

irreducible, and µ is a (in fact, the unique) cover of 0A in the lattice ConA.

Two algebras A and B are called similar if their sets of operations are indexed

over the same set and their corresponding operations are of equal arity. A mapping

ϕ : A → B between two similar algebras 〈A;F 〉 and 〈B;F 〉 is a homomorphism

if ϕ(fA(a0, . . . , an−1)) = fB(ϕ(a0), . . . , ϕ(an−1)) for all operations f ∈ F and for

all elements a0, . . . , an−1 ∈ A. The kernel of a homomorphism ϕ : A → B is the

congruence of A defined as kerϕ = { 〈a, b〉 ∈ A2 : ϕ(a) = ϕ(b) }. A homomorphism

ϕ : A→ B is called an isomorphism if it is one-to-one and onto, an endomorphism if

A = B, and an automorphism if it is both an isomorphism and an endomorphism. To

denote that A isomorphic to B, that is, there exists an isomorphism between them,
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we write A ∼= B. We say that B is a homomorphic image of A if there exists a

homomorphism of A onto B.

Given an algebra A = 〈A;F 〉 and a congruence α ∈ ConA, the factor algebra

A/α = 〈A/α;F 〉 is defined on the set A/α = { a/α : a ∈ A } of blocks of α by setting

fA/α(a0/α, . . . , an−1/α) = fA(a0, . . . , an−1)/α for all operations f ∈ F and elements

a0/α, . . . , an−1/α ∈ A/α. It is not hard to see that the operations fA/α are well-

defined, because α is a compatible equivalence relation. The mapping ϕ : A→ A/α

defined by ϕ(a) = a/α is a homomorphism, called the natural homomorphism.

Let A = 〈A;F 〉 and B = 〈B;F 〉 be two similar algebras. We call B a subalgebra

of A, and write B ≤ A, if B ⊆ A and fB(a0, . . . , an−1) = fA(a0, . . . , an−1) for all

operations f ∈ F and for all elements a0, . . . , an−1 ∈ B. A subset C ⊆ A is called a

subuniverse of A if it is closed under all operations of A, that is, f(a0, . . . , an−1) ∈ B

for all f ∈ F and for all elements a0, . . . , an−1 ∈ C. Clearly, there is a one-to-one

correspondence between subalgebras and nonvoid subuniverses of A. The subalgebra

of A generated by a set C0 ⊆ A is the smallest subalgebra C ≤ A such that C0 ⊆ C.

An algebra A is generated by a set A0 ⊆ A if the subalgebra generated by A0 is

A. We call an algebra n-generated, or finitely generated, if it is generated by an

n-element set, or a finite set, respectively.

Let {Ai : i ∈ I } be a set of similar algebras, and let B be the Cartesian product
∏

i∈I Ai of the sets Ai. The i-th projection, i ∈ I, is the mapping πi : B → Ai defined

by πi(ā) = ai for all tuples ā = 〈. . . , ai, . . . 〉 ∈
∏

i∈I Ai. For a subset K ⊆ I, define the

mapping πK : B →
∏

k∈K Ak by πK(ā) = 〈ak : k ∈ K〉. The product B =
∏

i∈I Ai is

the algebra defined on B by setting πj(f
B(ā0, . . . , ān−1)) = fAj(πj(ā0), . . . , πj(ān−1))

for all operations f ∈ F , for all tuples ā0, . . . , ān−1 ∈
∏

i∈I Ai and for all indices

j ∈ I. Clearly, all projections of B are onto homomorphisms, by definition. We

say that an algebra C is a subdirect product of the algebras Ai (i ∈ I), if C ≤ B

and every projection πi maps C onto Ai. It is not hard to see that an algebra
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is subdirectly irreducible if it is not isomorphic in a non-trivial way to a subdirect

product. Moreover, the subdirect representation theorem of Birkhoff states that every

algebra is isomorphic to a subdirect product of subdirectly irreducible algebras.

By a language L we shall mean an indexed set F = { fi : i ∈ I } of operation

symbols such that a nonnegative integer, called the arity, is assigned to each member

of F . An algebra A is in the language L if the set of operations of A is indexed over I

and the corresponding operations and operation symbols are of equal arity. Clearly,

algebras are similar if and only if they are in the same language. For any nonvoid

set X, there is an algebra FL(X) in L, generated by X, having the property that

every mapping ϕ0 of X into an algebra A in L has a unique extension ϕ which is a

homomorphism of FL(X) into A. The algebra FL(X) is called the free algebra in L,

freely generated by X. It is determined up to isomorphism by X.

A term in a language L is simply a member of FL(X) for some finite set X.

Terms t ∈ FL(X) where X = {x0, . . . , xn−1} will be written as t(x0, . . . , xn−1). Let

t = t(x0, . . . , xn−1) be such a term. Given elements a0, . . . , an−1 in an algebra A

in L, we define tA(a0, . . . , an−1) to be the element ϕ(t) where ϕ is the homomor-

phism of FL(X) into A with ϕ(x0) = a0, . . . , ϕ(xk−1) = ak−1. This defines a n-ary

operation tA on the universe of A, corresponding to the term t(x0, . . . , xn−1). Op-

erations in the algebra A that can be defined in this way are called term opera-

tions of A. Given a term operation tA(x0, . . . , xn−1) of A, a non-negative integer

k ≤ n, and elements ck, . . . , cn−1 ∈ A, we define an operation pA(x0, . . . , xk−1) =

tA(x0, . . . , xk−1, ck, . . . , cn−1) of A. Operations that can be defined in this way are

called polynomials of A.

An equation in the language L is an ordered pair of terms, both of which are

members of the same free algebra. Equations are written in the form s(x0, . . . , xn−1) =

t(x0, . . . , xn−1). Such an equation is said to be an identity of an algebra A in L if

sA = tA (an equivalent expression is that s = t holds in A). If Σ is a set of equations
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in the language L, the class of all algebras in L in which every member of Σ is an

identity will be called the class of models of Σ. Classes of algebras of this form are

called varieties. It is well known that the class of all groups, all rings, all semilattices,

and all lattices each forms a variety. We say that a variety V is finitely based if it is

the class of models of some finite set of equations.

For any class K of similar algebras, H(K), S(K), and P(K) denote the class of

all algebras that are, respectively, homomorphic images of algebras in K, isomorphic

to a subalgebra of an algebra in K, or isomorphic to a product of algebras in K.

According to the HSP-theorem of Birkhoff, a class K of similar algebras is a variety

if K = HSP(K), and the smallest variety containing a class K of similar algebras is

V(K) = HSP(K). We call a variety V finitely generated if V = V(A) for some finite

algebra A. A variety V is congruence distributive (congruence meet-semidistributive)

if the congruence lattice of every member of V is distributive (meet-semidistributive).

A variety V is said to be locally finite if every finitely generated subalgebra of a

member of V is finite. A variety W is a subvariety of V if W ⊆ V . Subvarieties of V

form a lattice, called the subvariety lattice of V .

Let L be a language, and V be a variety of algebras in L. For any nonvoid set X

there exists an algebra FV(X) in V , generated by X, such that every mapping of X

into an algebra A ∈ V uniquely extends to a homomorphism of FV(X) into A. We

call FV(X) the free algebra in V , freely generated by X. It is determined (in V) up

to isomorphism by X. Clearly, FV(X) ∼= FL(X)/ϑ for some congruence ϑ of FL(X).

One proof of Birkhoff’s theorem proceeds by noting that, for all pairs s, t ∈ FL(X)

of terms, the equation s = t holds in all members of V if and only if 〈s, t〉 ∈ ϑ.
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CHAPTER III

PRELIMINARY RESULTS

T is locally finite

Theorem 3.1. Let A ∈ T be an n-generated algebra that is a homomorphic image

of a subalgebra B of a product of tournaments. Then there exists a finite subalgebra

C ≤ B such that A is a homomorphic image of C, and C is a subdirect product of

finitely many at most n-element tournaments.

Proof. Let B be a subalgebra of a product
∏

i<κTi of tournaments Ti, and ϕ be

a homomorphism of B onto A. Let A0 be an n-element generating set for A, and

for each a ∈ A0 take a representative element b ∈ B such that ϕ(b) = a, and let

C0 be the set of these representative elements. Clearly, |C0| = n. Denote by C the

subalgebra of B generated by C0. Since A0 is a generating set for A and ϕ(C0) = A0,

the homomorphism ϕ|C maps C onto A. We argue that C is a subdirect product of

finitely many at most n-element tournaments. Consider the projection πi ofC into the

tournament Ti. The subtournament Si = πi(C) of Ti is generated by πi(C0). Since

every nontrivial subset of a tournament is a subuniverse, Si = πi(C0) and |Si| ≤ n.

Accordingly, C ≤
∏

i<κ Si is a subdirect product of at most n-element tournaments.

But there are only finitely many at most n-element tournaments, up to isomorphism.

And for each such tournament S there are only finitely many homomorphisms π of

C onto S, because π is uniquely determined by its value on C0. Therefore, C is a

subdirect product of a finite subset of {Si : i < κ }.

Corollary 3.2. The variety T is locally finite. The n-generated free algebra in T is

isomorphic to a subdirect product of at most n-element tournaments.
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Three variable equations of T

For a positive integer, we denote by T n the variety of groupoids determined by all

of the equations in at most n variables that are satisfied in T . In this way we obtain

a chain T 1 ⊇ T 2 ⊇ T 3 ⊇ · · · ⊇ T of varieties such that
⋂∞

i=1 T
i = T . It is not hard

to see that T 2 is just the variety of commutative idempotent groupoids.

Theorem 3.3. The following four equations are a base for the equational theory

of T 3:

(1) xx = x

(2) xy = yx

(3) xy · x = xy

(4) (xy · xz)(xy · yz) = xyz

In particular, the following equations are consequences of (1)− (4):

(5) (xy · xz)x = xy · xz

(6) xyz · xz = yxzx

(7) (xy · xz)(xyz) = xyz

(8) (xy · xz)z = xyz

(9) (xy · xz) · yz = xyzy

(10) xyzy = xzyz

(11) xyzy · xy = yx · yz

(12) (xy · xz)(yzx) = xy · xz
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(13) xyzy · yz = xyzy

(14) xyzy · (xy · xz) = xyzy

(15) xyz · xzy = xyzy

(16) xyzy · (yx · yz) = yx · yz

(17) xyzy · yxzx = zx · zy

(18) xyzyx = yzx

(19) xyzy · yzx = yzx

The free, 3-generated groupoid F3 has 15 elements

a = x d = xy g = yzx j = xy · xz m = yxzx = yzxz

b = y e = xz h = xzy k = yx · yz n = zxyx = zyxy

c = z f = yz i = xyz l = zx · zy o = xyzy = xzyz

The multiplication table for F3 is given below.

a b c d e f g h i j k l m n o
a a d e d e g g n m j g g m n g
b d b f d h f n h o h k h h n o
c e f c i e f m o i i i l m i o
d d d i d j k n n i j k n j n k
e e h e j e l m h m j m l m j l
f g f f k l f g o o o k l l k o
g g n m n m g g n m j g g m n g
h n h o n h o n h o h k h h n o
i m o i i m o m o i i i l m i o
j j h i j j o j h i j i h j j o
k g k i k m k g k i i k g m k k
l g h l n l l g h l h g l l n l
m m h m j m l m h m j m l m j l
n n n i n j k n n i j k n j n k
o g o o k l o g o o o k l l k o

13



Proof. It is easy to check that equations (1) − (4) are valid in all tournaments. We

prove the other equations from these. Put u = xy, v = xz and w = yz.

(5) (xy · xz)x =(4) ((xy · xz)(xy · x)) · ((xy · xz)(xz · x)) =(1,2,3) xy · xz

(6) yxzx =(2) xyzx =(4) (xyz · xyx)(xyz · zx) =(2,3) xyz · xz

(7) (xy ·xz) ·xyz =(4) (xy ·xz) · ((xy ·xz)(xy · yz)) =(2,3) (xy ·xz)(xy · yz) =(4) xyz

(8) (xy · xz)z =(4) ((xy · xz) · xyz) · ((xy · xz) · xzz) =(2,3) (xy · xz) · xyz =(7) xyz

(9) xyzy =(6) yxz · yz =(4) (yx · yz)(yx · xz) · yz =(2) (uv · uw) · w =(8) uvw =

(xy · xz) · yz

(10) xyzy =(9) (xy · xz) · yz =(2) (xz · xy) · zy =(9) xzyz

(11) xyzy · xy =(2) zuyu =(10) zyuy =(2) (yx · yz)y =(5) yx · yz

(12) (xy ·xz) ·yzx =(4) (xy ·xz) ·((yz ·yx)(yz ·zx)) =(2) (wu ·wv) ·uv =(9) wuvu =(2)

((yz · yx) · zx) · yx =(9) yzxz · yx =(10) yxzx · yx =(11) xy · xz

(13) xyzy · yz =(9) ((xy · xz) · yz) · yz =(3) (xy · xz) · yz =(9) xyzy

(14) xyzy · (xy · xz) =(9) ((xy · xz) · yz) · (xy · xz) =(2,3) (xy · xz) · yz =(9) xyzy

(15) xyz ·xzy =(4) ((xy ·xz)(xy ·yz)) · ((xz ·xy)(xz · zy)) =(2) (uv ·uw)(uv ·vw) =(4)

uvw = (xy · xz) · yz =(9) xyzy

(16) xyzy ·(yx·yz) =(2) (zy ·xy)·(z ·xy ·y) = zyu·zuy =(15) zyuy =(2) (yx·yz)·y =(5)

yx · yz

(17) xyzy · yxzx =(9) ((xy · xz) · yz) · ((yx · yz) · xz) =(2) uwv · uvw =(15) uwvw =(6)

wuv · wv =(2) ((zx · zy) · xy) · (zx · zy) =(9) xzyz · (zx · zy) =(16) zx · zy

(18) xyzyx =(8) (xyzy · xyzx) · x =(2) (xyzy · yxzx) · x =(17) (zx · zy) · x =(2)

(zy · zx) · x =(8) zyx =(2) yzx
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(19) xyzy · yzx =(9,4) ((xy · xz) · yz) · ((yz · yx)(yz · zx)) =(2,1) (wu ·wv) · uvw =(12)

wu · wv =(2) (yz · yx)(yz · zx) =(4) yzx

Now that the equations are proved, we can start to build the free groupoid on three

generators x, y, z. Equations (1)− (19) imply that the fifteen terms a, . . . , o multiply

among each other, with respect to the equational theory of T 3, as in the table.

Consequently, the free groupoid can have no more than fifteen elements. Clearly,

a, . . . , f are distinct from each other and from each of the elements g, . . . , o. The last

nine elements are also distinct from each other: one can easily check that the terms

behave differently on the three-element cycle.

It is not easy to picture the free groupoid F3. For one possible graphical represen-

tation of F3 see Fig. 2 in which not all pairs of comparable elements are connected.

However, the missing ones can be recovered with some practice.

i

o

l

k

g

n

h

j

m

b e

d

a f

c

Figure 2: The free groupoid F3

Lemma 3.4. Let A ∈ T 3 and let a, b, c ∈ A. Then:

(1) If a→ c and b→ c, then ab→ c.

(2) If c→ a and c→ b, then c→ ab.
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(3) If ab→ c→ a, then bc = ab.

(4) If a→ c and c→ b, then a→ abc→ b.

(5) If a→ b→ c→ a, then either a = b = c or a 6= b 6= c 6= a.

(6) If a→ c→ b, a 6→ b, and ab and c are comparable, then c→ ab.

Proof. Each of the situations (1) − (4) generates a congruence ϑ of the free algebra

F3 with generators a, b, c. The congruence ϑ can be easily described from the multi-

plication table of F3, and then the conclusion can be verified in F3/ϑ. For (4) we get

the groupoid pictured in Fig. 3. Statement (5) follows from the fact that the three

element cycle is simple. To check (6), consider the groupoid pictured in Fig. 3. Since

a 6→ b, that is, ab 6= a, we get a 6= ab 6= abc 6= a by (5). But ab and c are comparable,

hence we must have abc = c. Then c = abc→ ab.

abc

ab

c

ba

Figure 3: The groupoid F3/ϑ where ϑ = Cg(a, ac) ∨ Cg(c, cb)

T is non-finitely based

Theorem 3.5. For every n ≥ 3 there exists a groupoid Mn with n+2 elements such

that Mn belongs to T n but not to T n+1. Consequently, T is not finitely based.
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Proof. Put Mn = {a, b0, . . . , bn} and define a commutative and idempotent multipli-

cation on Mn by

ab1 = b0,

abi = bi for i ≤ n− 1 and i 6= 1,

abn = a,

bibi+1 = bi for i < n− 1,

bnbn−1 = bn,

bibj = bmax(i,j) for |i− j| ≥ 2 and i, j < n,

bnbi = bi for i < n− 1;

the multiplication in the other cases is given by commutativity and idempotency (see

Fig. 4).

bn−1 bn−2 bn−3 bn−4 b0b1b2b3

abn

Figure 4: The groupoid Mn
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Define terms t1, s1, t2, s2, . . . , tn, sn in n+ 1 variables x, y1, . . . , yn as follows:

t1 = y1 and s1 = xy1;

ti = si−1yi and si = ti−1yi for 2 ≤ i ≤ n− 1;

tn = tn−1yn−3yntn−1 and sn = sn−1yn−3yntn−1 if n ≥ 4,

while t3 = t2s1y3t2 and s3 = s2s1y3t2 if n = 3.

Finally, put t = s1tnsntn(xtn) and s = t(s1tn).

We are going to prove that the equation t = s is satisfied in any tournament.

There will be no confusion if we do not distinguish between a term and its value in a

tournament under an interpretation. We consider two cases:

If s1 = x, then

t = xtnsntn(xtn)

and

s = xtnsntn(xtn)(xtn) = xtnsntn(xtn) = t.

The other case is s1 = y1. Then we have t1 = s1, t2 = s2, . . . , tn = sn. Conse-

quently,

t = y1tn(xtn) and s = y1tn(xtn)(y1tn); (∗)

clearly, these two values are equal. (In these arguments we have repeatedly used

equation (3) from Theorem 3.3.)

So, t = s in every tournament under any interpretation.

This means that the equation t = s is satisfied in T . On the other hand, we are

going to show that the equation is not satisfied in the groupoid Mn. Consider the

interpretation x 7→ a, yi 7→ bi. By induction on i = 1, . . . , n we can see that ti 7→ bi

and si 7→ bi−1. So, t 7→ a and s 7→ b0. Since a 6= b0, the equation t = s is not satisfied

in Mn.
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We have proved that the groupoid Mn does not belong to T . Since it is generated

by n+ 1 elements, it follows that it does not belong to T n+1. In order to prove that

it belongs to T n, it is sufficient to show that every subgroupoid of Mn generated by

at most n elements belongs to T .

If we remove either a or b1 fromMn, we obtain a subtournament. If we remove b0,

we must remove either a or b1 in order to obtain a subgroupoid. So, it is sufficient

to prove that, for any i = 2, . . . , n, Mn \ {bi} is a subgroupoid belonging to T .

One can easily check that there are two congruences C1 and C2 of Mn \ {bi} with

trivial intersection, such that both factors (Mn \ {bi})/C1 and (Mn \ {bi})/C2 are

tournaments: C1 is the congruence generated by (a, b0) and C2 is the congruence

generated by (b1, b0). (It is easy to see that {a, b0} and {bi−1, . . . , b0} are the only non-

singleton blocks of C1 and C2, respectively.) Consequently, Mn \ {bi} is a subdirect

product of two tournaments (its factor groupoids by C1 and C2) and hence belongs

to T .

Now we show that T is inherently non-finitely generated. We use often the tour-

nament Ln, which consists of n elements a0, . . . , an−1 with ai → aj if and only if either

i = j or j = i + 1 or i > j + 1. Let Nn be the tournament Ln with two elements a

and b adjoined where ai → a→ b for all i < n, ai → b for all i < n− 1 and b→ an−1

(see Fig. 5).

T is inherently non-finitely generated

Theorem 3.6. If A is any groupoid with Nn ∈ V(A) then |A| ≥ n. Hence the variety

T is inherently non-finitely generated.

Proof. We can assume that A is finite, D is a subalgebra of Ak, ϕ is a homomorphism

of D onto Nn, and k is minimum for the existence of D and ϕ. Thus there exist
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an−1 an−2 an−3 an−4 a1a2a3

ab

a0

Figure 5: The tournament Nn

f, g ∈ D such that ϕ(f) 6= ϕ(g) and f |k−1 = g|k−1.

The crucial property of Ln is that for any x 6= y and u 6= v in Ln there is a trans-

lation (i.e., a polynomial p of the form p(w) = wr1r2 · · · rt) such that {p(x), p(y)} =

{u, v}. In fact, Ln is a simple algebra of type 3 and it follows from a result in [10]

that Ln must be a homomorphic image of a subalgebra of A (actually, k = 1). But

let’s just prove directly that |A| ≥ n.

From the two remarks above, there must exist fi, gi ∈ D such that fi|k−1 = gi|k−1

and ϕ(fi) = a and ϕ(gi) = ai. Then put

f = f0f1 . . . fn−1,

hi = f0 . . . fi−1gifi+1 . . . fn−1

and we have that all elements f, h0, . . . , hn−1 agree on k − 1 and ϕ(f) = a while

ϕ(hi) = ai.

These elements of D must all disagree at their last coordinate, hence A has at

least n+ 1 elements.
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T is congruence meet-semidistributive

Theorem 3.7. The variety T is congruence meet-semidistributive.

Proof. We will prove the theorem using basic tame congruence theory. Alternatively,

one could use the Mal’cev condition given in [21].

By Exercise 7.14 (4) of [10], a locally finite variety V is congruence meet-semi-

distributive if and only if typ{V} ∩ {1,2} = ∅. Recall that T is locally finite. To

check that types 1 and 2 are omitted in T , take a finite algebra A ∈ T , a prime

congruence quotient α ≺ β of A, and an 〈α, β〉-subtrace {a, b}. Thus 〈a, b〉 ∈ β \ α.

Clearly, both pairs 〈a, ab〉 and 〈ab, b〉 of elements of A are β related, and at least one

of them is not α related. Assume, for example, that 〈a, ab〉 ∈ β \α. Then {a, ab} is an

〈α, β〉-subtrace, and multiplication is a semilattice operation on {a, ab}. Therefore,

typ(α, β) 6∈ {1,2}, by Exercise 5.11 (1) of [10].

Infinitely many incomparable tournaments

In the rest of this chapter we construct an infinite sequence of finite simple tour-

naments An (n ≥ 8) such that no one is isomorphic to a subalgebra of some other

one. The tournament An is defined on the set An = {an,1, . . . , an,n} in the following

way (see Fig. 6):

an,n → an,1;

an,i+2 → an,i for 1 ≤ i ≤ n− 2;

an,i → an,j for 1 ≤ i < j ≤ n, j 6= i+ 2, (i, j) 6= (1, n).
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an,1 an,2 an,3 an,4 an,n−3 an,n−2 an,n−1 an,n

Figure 6: The tournament An

Lemma 3.8. Let an,i, an,j be two distinct elements of An such that an,i → an,j. Put

X = {x ∈ An \ {an,i, an,j} : an,j → x→ an,i}. Then:

(1) For (i, j) = (n, 1), X = {an,2, an,4, an,5, . . . , an,n−4, an,n−3, an,n−1} and |X| ≥ 4.

(2) For 1 ≤ j < i = j + 2 ≤ n, X ⊆ {an,j−2, an,j+1, an,j+4}.

(3) For 1 = i < j, X ⊆ {an,3, an,n}.

(4) For i < j = n, X ⊆ {an,1, an,n−2}.

(5) For 2 ≤ i < i+ 1 = j ≤ n− 1, X ⊆ {an,i−1, an,i+2}.

(6) For 2 ≤ i < i+ 4 = j ≤ n− 1, X = {an,i+2}.

(7) In all other cases, X = ∅.

Proof. It is easy.

Lemma 3.9. Let n,m ≥ 8 and let α be an embedding of An into Am. Then α(an,1) =

am,1 and α(an,n) = am,m.

Proof. We have α(an,n) → α(an,1) and, by Lemma 3.8 (1), there are at least four

elements x ∈ Am\{α(an,1), α(an,n)} such that α(an,1)→ x→ α(an,n). By Lemma 3.8,

it follows that (α(an,n), α(an,1)) = (am,m, am,1).
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Lemma 3.10. Let n,m ≥ 8 and let α be an embedding of An into Am. Then

α(an,2) = am,2 and α(an,3) = am,3.

Proof. Put x = α(an,2), y = α(an,3), z = α(an,4) and u = α(an,5). Then x, y, z, u

are four distinct elements of Am \ {am,1, am,m} such that am,1 → x → y → z → u,

y → am,1, z → x, u→ y, x→ u, am,1 → u. From am,1 → x→ y → am,1 we get either

(x, y) = (am,2, am,3) or (x, y) = (am,5, am,3). In the first case we are done, so suppose

that x = am,5 and y = am,3. From y → z → x (i.e., am,3 → z → am,5) we get either

z = am,4 or z = am,7.

Suppose z = am,4. From z → u → y we get either u = am,2 or u = am,5. In the

first case we get a contradiction with x→ u, and the second case contradicts x 6= u.

So, it remains to consider the case z = am,7. From z → u → y we get u = am,5, a

contradiction with x 6= u.

Lemma 3.11. Let n,m ≥ 8 and let α be an embedding of An into Am. Then

α(an,i) = am,i for all i = 1, . . . , n.

Proof. By Lemma 3.9 and Lemma 3.10, this is true for i = 1, 2, 3. Let i ≥ 4 and

suppose α(an,j) = am,j for all j < i. Put x = α(an,i). We have an,i−1 → an,i → an,i−2

in An, and thus am,i−1 → x → am,i−2 in Am. Moreover, x /∈ {am,1, . . . , am,i−1}. But

there is only one element x in Am with these properties, namely, x = am,i. Hence

α(an,i) = am,i.

Lemma 3.12. An is a simple tournament for n ≥ 8.

Proof. Let ϑ 6= idAn
be a congruence of An. We need to prove that ϑ = An × An.

If (an,i, an,i+1) ∈ ϑ for some i, then in the case i > 1 we have an,i−1 → an,i →

an,i+1 → an,i−1, from which it follows that (an,i−1, an,i) ∈ ϑ; and in the case i+ 1 < n

we have (an,i+1, an,i+2) ∈ ϑ for the same reason. Hence, if (an,i, an,i+1) ∈ ϑ for some i,

then ϑ = An × An.
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If (an,i, an,i+2) ∈ ϑ for some i, then (an,i, an,i+1) = (an,ian,i+1, an,i+2an,i+1) ∈ ϑ, so

that ϑ = An × An.

If (an,i, an,i+3) ∈ ϑ for some i, then one of the following two cases takes place. If

i ≥ 3, then (an,i, an,i−2) = (an,ian,i−2, an,i+3an,i−2) ∈ ϑ. If i ≤ n−5, then (an,i, an,i+5) =

(an,ian,i+5, an,i+3an,i+5) ∈ ϑ and hence (an,i+3, an,i+5) ∈ ϑ. But then, ϑ = An × An in

both cases.

Finally, if (an,i, an,j) ∈ ϑ and j ≥ i+4, then (an,i, an,i+1) = (an,ian,i+1, an,jan,i+1) ∈

ϑ, so that ϑ = An × An.

Theorem 3.13. The tournaments An with n ≥ 8 are all simple and pairwise incom-

parable in the sense that if n 6= m, then An cannot be embedded into Am.

Proof. It follows from the Lemmas 3.8–3.12.
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CHAPTER IV

STRONGLY CONNECTED ALGEBRAS

The compatible quasiordering

Definition 4.1. For an algebra A ∈ T 3 and two elements a, b ∈ A, write a . b if

there exist elements a0, . . . , ak−1 ∈ A such that a = a0 →
A a1 →

A · · · →A ak−1 = b.

Write a ∼ b if both a . b and b . a. Clearly, . is a quasiordering and ∼ is an

equivalence on A.

Lemma 4.2. Let A ∈ T 3. Then . is a compatible quasiordering, ∼ is a congruence

of A, and the factor A/∼ is a semilattice; actually, ∼ is precisely the least congruence

of A such that the factor is a semilattice.

Proof. Compatibility means that a . b implies ac . bc; for this, it is sufficient to

prove that a→ b implies ac . bc. If ab = a, then ac = aca = abca = baca = bcac→

bca→ bc.

Consequently, ∼ is a congruence. Due to the equation (18) of Theorem 3.3,

the factor A/∼ satisfies xy · z = xz · y; together with commutativity, this implies

associativity. We have proved that A/∼ is a semilattice. Clearly, every congruence,

the factor by which is a semilattice, contains ∼.

Subalgebras of subdirectly irreducibles

Lemma 4.3. Let A ∈ T 3 be a subdirectly irreducible algebra, and B be a subalgebra

of A such that |B| ≥ 2 and B2 ∪ idA is a congruence of A. Then B is subdirectly

irreducible.
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Proof. We argue that for every ϑ ∈ ConB, ϑ∪ idA is a congruence of A. Then it will

follow that ConB has a unique co-atom, and thus B is subdirectly irreducible.

Let ϑ ∈ ConB and take a pair 〈a, b〉 ∈ ϑ of elements and c ∈ A. We need to

show that 〈ac, bc〉 ∈ ϑ ∪ idA. If ac 6∈ B or bc 6∈ B, then ac = bc, because B2 ∪ idA

is a congruence of A. So we can assume that ac, bc ∈ B. Then 〈a · ac, b · ac〉 ∈ ϑ,

〈b ·(ac)(bc), a ·(ac)(bc)〉 ∈ ϑ and 〈a ·bc, b ·bc〉 ∈ ϑ, because ϑ is a congruence of B. But

ac = a · ac, b · ac = b · (ac)(bc), a · (ac)(bc) = a · bc and b · bc = bc, by Theorem 3.3 (3)

and (8). Thus 〈ac, bc〉 ∈ ϑ.

Corollary 4.4. Let A ∈ T 3 be a subdirectly irreducible algebra, and B be a subalgebra

of A. If |B| ≥ 2 and B is a down-set of ., that is, ba ∈ B for all b ∈ B and a ∈ A,

then B2 ∪ idA is a congruence of A and therefore B is subdirectly irreducible.

Definition 4.5. Let A ∈ T 3. An element 0 ∈ A is the zero element of A if 0→ a for

all a ∈ A. An element 1 ∈ A is the unit element of A if a→ 1 for all a ∈ A. Clearly,

A has at most one zero and one unit element.

Lemma 4.6. Let A ∈ T 3 be a subdirectly irreducible algebra such that |A| ≥ 3. If A

has a zero element 0 ∈ A, then A \ {0} is a subdirectly irreducible subalgebra of A. If

A has a unit element 1 ∈ A, then A \ {1} is a subdirectly irreducible subalgebra of A.

Proof. LetA ∈ T 3 be a subdirectly irreducible algebra with a zero element 0 ∈ A. We

argue that A \ {0} is a subuniverse of A. To get a contradiction, suppose that bc = 0

for some elements b, c ∈ A\{0}. Put B = {x ∈ A : x . b } and C = {x ∈ A : x . c }.

Clearly, {0} is the least block of ∼, and 0 ∈ B ∩C. On the other hand, if x ∈ B ∩C,

then x . b and x . c, so x . bc = 0. Therefore B∩C = {0}. Then, by Corollary 4.4,

B2∪ idA and C2∪ idA are nontrivial congruences of A, and their intersection is trivial.

This contradicts the assumption that A is subdirectly irreducible. Hence A\{0} is a

subalgebra of A. Now it is clear that (A \ {0})2 ∪ idA is a congruence of A, therefore

A \ {0} is subdirectly irreducible by Lemma 4.3.
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If A has a unit element 1 ∈ A, then, clearly, A \ {1} is a subalgebra of A and

(A\{1})2∪ idA is a congruence of A. Therefore A\{1} is subdirectly irreducible.

Reduction to strongly connected subdirectly irreducibles

Lemma 4.7. Let A ∈ T 3 be such that the least block B of ∼ is a tournament. Then

for every element a ∈ A \ B, such that a is incomparable with at least one element

of B, there exists a unique element a′ ∈ B with the following two properties:

(1) ax = a′ for any x ∈ B incomparable with a (in particular, a′ → a);

(2) y → a′ for any y ∈ B such that y → a.

Proof. Suppose ax1 6= ax2 for two elements x1, x2 ∈ B incomparable with a. We

have either ax1 → x2 or x2 → ax1. If ax1 → x2, then ax1 → x2 and ax1 → a imply

ax1 → ax2 by the properties of a product. If x2 → ax1, then x2 → ax1 → a implies

ax1 → ax2 by Lemma 3.4 (6). So, ax1 → ax2 in any case. But then ax2 → ax1 by

symmetry, and we get ax1 = ax2.

Take an arbitrary element x ∈ B which is incomparable with a, and put a′ = ax.

Let y ∈ B be such that y → a. The only alternative to y → a′ could be a′ → y, so

suppose that. Since a′ = ax and a′ → y → a, we have xy = a′. But xy is either x

or y, so y = a′.

Lemma 4.8. Let A ∈ T 3 be a finite, subdirectly irreducible algebra such that the least

block B of ∼ is a tournament. Then x→ a for any x ∈ B and any a ∈ A \B.

Proof. Suppose, on the contrary, that some element of A \B is incomparable with at

least one element of B, and take a minimal (with respect to .) such element a. Take

an element x ∈ B incomparable with a and put a′ = ax. If there is an element b such

that B < b/∼ < a/∼, then there is one such element with b→ a (replace b with ab if
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necessary); we have x→ b by the minimality of a, so that b→ a′ by Lemma 3.4 (6),

a contradiction. This proves that a/∼ is an atom in A/∼. So by Corollary 4.4, it is

sufficient to assume that A = B ∪ (a/∼). Thus A \B is a subuniverse of A.

The set A \B can be partitioned into two subsets: the (possibly empty) subset C

of the elements c satisfying x→ c for all x ∈ B, and the subset D of the elements a

for which the element a′ ∈ B, as in Lemma 4.7, exists. Denote by θ the equivalence

on A with blocks {x}∪{ a ∈ D : a′ = x } for x ∈ B (and singletons, corresponding to

the elements of C). The following three observations will imply that θ is a congruence

of A.

Claim 1. If a ∈ D and b ∈ B, then ab ∈ B and ab = a′b.

If a and b are incomparable, then ab = a′ = a′b. The other possibility is that

b→ a. Then b→ a′ and ab = b = a′b.

Claim 2. If a ∈ D and b ∈ C, then ab ∈ D and (ab)′ = a′b = a′.

Since a′ → a and a′ → b, we have a′ → ab. Since a′ → ab → a, we have

x · ab = xa = a′ by Lemma 3.4 (3). Clearly, ab ∈ A \B, thus either x→ ab, or x and

ab are incomparable. If x→ ab, then x→ ab→ a implies ab→ a′ by Lemma 3.4 (6),

a contradiction.

Claim 3. If a, b ∈ D and a′ → b′, then ab ∈ D and (ab)′ = a′b = ab′ = a′.

Since a′ → b′, we have b′a = a′. By the definition of b′, a′ → b′ implies a′ → b.

By Theorem 3.3 (18) we get ab · b′ = b′abab′ = a′bab′ = a′ab′ = a′b′ = a′. Clearly,

ab ∈ A \ B. It remains to prove that ab and b′ are incomparable. If b′ → ab, then

b′ → ab→ a gives ab→ a′, a contradiction.

We conclude that θ is a congruence of A. This gives us a contradiction with

Corollary 4.4, since θ is nontrivial, |B| ≥ 2, and θ ∩B2 = id.
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Lemma 4.9. Let A ∈ T 3 be a finite, subdirectly irreducible algebra without zero, such

that the least block of ∼ is a tournament. Then A is a tournament.

Proof. First, the least block B of ∼ has at least two elements, since A has no zero.

Suppose that A contains a pair of incomparable elements. By Lemma 4.8, both

elements must belong to A \ B. If A \ B is a subgroupoid, then (A \ B)2 ∪ idA is a

congruence, which is not possible. So, let ab ∈ B for some a, b ∈ A \ B. For every

x ∈ B we have x → a and x → b and hence x → ab. Thus ab is the unit element

of B, which contradicts that B is a block of ∼.

Definition 4.10. An algebra A ∈ T 3 is strongly connected if ∼ = A2, that is,

for all pairs a, b of elements of A there exist elements a0, . . . , ak−1 ∈ A such that

a = a0 →
A a1 →

A · · · →A ak−1 = b.

Theorem 4.11. Every finite, subdirectly irreducible algebra in T 3 which is not a

tournament contains a strongly connected, subdirectly irreducible subalgebra which is

again not a tournament.

Proof. By Lemma 4.6 we can assume that the algebra has no zero element. By

Corollary 4.4 the least block of ∼ does the job, unless it is a tournament. However,

it is not a tournament by Lemma 4.9.

29



CHAPTER V

SUBDIRECTLY IRREDUCIBLES

Subdirect products of strongly connected tournaments

Lemma 5.1. Let A ∈ T be a finite, strongly connected algebra which is a homomor-

phic image of a subalgebra B of a product of tournaments. Then there exists a finite

subalgebra C ≤ B such that A is a homomorphic image of C, and C is a subdirect

product of finitely many strongly connected finite tournaments.

Proof. We can assume that B is a finite subdirect product B ≤
∏

i<kTi of finitely

many finite tournaments Ti, by Theorem 3.1. Let ϕ be the homomorphism of B onto

A. Take a traversal f : A→ B for ϕ, that is, a mapping such that ϕf(a) = a for all

a ∈ A. Since A is finite and strongly connected, there exists a loop a0 ←
A a1 ←

A

· · · ←A an−1 ←
A a0 that goes through (possibly more than once) all elements of A.

For an integer i, put i′ = i mod n. We define an infinite sequence b0, b1, . . . ∈ B of

elements by

b0 = f(a0), and

bi = bi−1f(ai′) for i > 0.

Using induction it is easy to check that ϕ(bi) = ai′ for all i ≥ 0. Indeed, ϕ(b0) =

ϕf(a0) = a0, and

ϕ(bi) = ϕ(bi−1 · f(ai′)) = ϕ(bi−1) · ϕf(ai′)

= a(i−1)′ · ai′ = ai′

for i > 0. In particular, ϕ(bjn) = a0 for all j ≥ 0. Since B is finite, there must exist
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a pair of positive integers s < t such that bsn = btn. Notice that

bsn ←
B bsn+1 ←

B · · · ←B btn−1 ←
B bsn. (∗)

Put C0 = {bsn, bsn+1, . . . , btn−1}, and let C be the subalgebra of B generated by

C0. Clearly, ϕ(C) = A, because A ⊇ ϕ(C) ⊇ ϕ(C0) = {ϕ(bsn), . . . , ϕ(btn−1)} =

{a0, . . . , an−1} = A. Therefore A is a homomorphic image of C. We claim that

C is a subdirect product of strongly connected tournaments. Put Si = πi(C0) for

all i < k. Since all nonempty subsets of Ti are subuniverses, Si is a subtour-

nament of Ti. Therefore, πi(C) = πi(C0) = Si. On the other hand, πi(C0) =

{πi(bsn), πi(bsn+1), . . . , πi(btn−1)}. But by (∗),

πi(bsn)←
Ti πi(bsn+1)←

Ti . . . πi(btn−1)←
Ti πi(bsn),

hence Si is strongly connected for all i < k.

Lemma 5.2. Let A be a subdirect product of two strongly connected algebras B,C ∈

T , and suppose that B × {c} ⊆ A for some element c ∈ C. Then A = B × C.

Proof. Clearly, it is enough to show that B × {c′} ⊆ A for all c′ ∈ C. Since C is

strongly connected, for any element c′ ∈ C there exists a path c = c0 ←
C c1 ←

C

· · · ←C ck−1 = c′. Then it is enough to show that B×{ci} ⊆ A implies B×{ci+1} ⊆ A.

Since A is a subdirect product of B and C, there must exist an element b ∈ B such

that 〈b, ci+1〉 ∈ A. We want to show that 〈b′, ci+1〉 ∈ A for all b′ ∈ B. Since B is

strongly connected, there is a path b = b0 ←
B b1 ←

B · · · ←B bt−1 = b′ connecting b

and b′. Notice that 〈b0, ci〉, 〈b1, ci〉, . . . , 〈bt−1, ci〉 ∈ A because we have assumed that

B × {ci} ⊆ A. The product 〈b, ci+1〉〈b0, ci〉〈b1, ci〉 . . . 〈bt−1, ci〉 of elements of A is the

pair 〈b′, ci+1〉. Hence 〈b
′, ci+1〉 ∈ A.

Lemma 5.3. Let A and B be strongly connected algebras in T . Then Con(A×B) ∼=
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ConA× ConB.

Proof. Put C = A×B. We need to prove that for each congruence ϑ ∈ ConC there

exist congruences α ∈ ConA and β ∈ ConB so that ϑ = α × β. Clearly, every

congruence of C is a join of principal congruences CgC(c, c
′) where c→C c′. Because

the join of product congruences is also a product congruence, it is enough to show

the existence of α and β in the case when ϑ = CgC(c, c
′) and c→C c′.

Put c = 〈a, b〉 and c′ = 〈a′, b′〉 for elements a, a′ ∈ A and b, b′ ∈ B. Clearly a→A a′

and b→B b′. Define α = CgA(a, a
′) and β = CgB(b, b

′).

Now we argue that α× idB ⊆ ϑ where idB is the diagonal relation on B. We will

show that α × {〈b′′, b′′〉} ⊆ ϑ for all b′′ ∈ B. Since B is strongly connected, there

exists a path b = b0 ←
B b1 ←

B · · · ←B bk−1 = b′′ connecting b and b′′. Observe that

the unary polynomial q(x) = x〈a′, b0〉〈a
′, b1〉 . . . 〈a

′, bk−1〉 of C maps c to 〈a, b′′〉 and

c′ to 〈a′, b′′〉. Thus 〈a, b′′〉ϑ〈a′, b′′〉. But this implies that α× {〈b′′, b′′〉} ⊆ ϑ.

By a similar argument we get that idA×β ⊆ ϑ. Then α×β = (α×idB)∨(idA×β) ⊆

ϑ. On the other hand, 〈c, c′〉 ∈ α× β, thus ϑ ⊆ α× β.

Triangular graphs

Definition 5.4. We define the class of triangular graphs inductively in the following

way. All triangles, directed graphs on a set {a, b, c} with edges a → b → c → a, are

triangular. Now given two triangular graphs G and H, such that G and H have at

least one common edge, and no edge x →G y such that x ←H y, then the directed

graph 〈G ∪H;→G ∪→H〉 is triangular, as well.

It is worth noting a few basic properties of triangular graphs which follow imme-

diately from the definition. Let G be a triangular graph. Then G is finite, and has
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no loops, that is, a vertex a ∈ G such that a→G a. Moreover, G has no edge a→G b

such that a←G b. Furthermore, G is a union of triangles, and is strongly connected.

Lemma 5.5. Let G be a triangular graph and f be a map of a set H onto G. Then

the graph H = 〈H; f−1(→G)〉, with edges x →H y if and only if f(x) →G f(y), is

triangular, as well.

Proof. Take a traversal set H0 ⊆ H of f , that is, |f−1(x) ∩ H0| = 1 for all x ∈ G.

Clearly, the graph H0 = H|H0
is isomorphic to G, and therefore triangular. Now

for each edge a →H b we find a set Ha,b ⊆ H such that the graph Ha,b = H|Ha,b
is

triangular, contains the edge a→ b and has at least one common edge with H0. Then

the graph H = H0 ∪
⋃

{Ha,b : a→
H b } is triangular, by definition.

Since a →H b, f(a) →G f(b). Every edge of G is an edge of a triangle, that

is, there is an element c ∈ G such that c →G f(a) →G f(b) →G c. Take elements

a0, b0, c0 ∈ H0 such that f(a0) = f(a), f(b0) = f(b) and f(c0) = c. Finally, define

Ha,b = {a, b, a0, b0, c0}. Clearly, the triangle a0 →
Ha,b b0 →

Ha,b c0 →
Ha,b a0 has all its

edges common with H0. However, it also has a common edge with a→Ha,b b0 →
Ha,b

c0 →
Ha,b a, which has a common edge with a →Ha,b b →Ha,b c0 →

Ha,b a, which in

turn has a common edge with a0 →
Ha,b b0 →

Ha,b c0 →
Ha,b a0. Observe that Ha,b is a

union of these four triangles, hence Ha,b is triangular.

For a set G, we denote by F(G) the free algebra in T freely generated by G.

Lemma 5.6. Let G be a triangular graph. Then there exists an endomorphism τ of

the free algebra F(G) that satisfies the following two statements for all tournaments

T and homomorphisms ϕ : F(G)→ T.

(1) If ϕ(x)→T ϕ(y) for all edges x→G y, then ϕτ = ϕ.

(2) If ϕ(x)←T ϕ(y) for some edge x→G y, then ϕτ is constant.
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Proof. We prove the lemma by induction on the complexity of the triangular graph

G. In addition to (1) and (2) we will also prove the following statement.

(3) If {ϕ(x) : x ∈ G } = {s, t} for some elements s, t ∈ T , then ϕτ is the constant

st-valued homomorphism.

Notice that it is enough to check the conclusions of statements (1) − (3) on the

generating set G of F(G), because ϕτ is a homomorphism.

Claim 1. Let G be the 3-element triangular graph on a set {a, b, c} with edges a→G

b→G c→G a. Let τ be the endomorphism of F(G) defined by

τ(c) = cbac,

τ(b) = cbac(cb) = τ(c)(cb),

τ(a) = cbac(cb)(cba) = τ(b)(cba).

Then τ satisfies statements (1)− (3).

First we check statement (2). If ϕ(b)←T ϕ(c), then

ϕτ(c) = ϕ(c)ϕ(b)ϕ(a)ϕ(c) = ϕ(c)ϕ(a)ϕ(c) = ϕ(c)ϕ(a),

ϕτ(b) = ϕτ(c)ϕ(cb) = ϕ(c)ϕ(a)ϕ(c) = ϕ(c)ϕ(a),

ϕτ(a) = ϕτ(b)ϕ(cba) = ϕ(c)ϕ(a)(ϕ(c)ϕ(a)) = ϕ(c)ϕ(a).

Thus ϕτ is constant as claimed. So we can assume that ϕ(b) →T ϕ(c). If ϕ(a) ←T

ϕ(b), then

ϕτ(c) = ϕ(c)ϕ(b)ϕ(a)ϕ(c) = ϕ(b)ϕ(a)ϕ(c) = ϕ(b)ϕ(c),

ϕτ(b) = ϕτ(c)ϕ(cb) = ϕ(b)ϕ(c)ϕ(b) = ϕ(b)ϕ(c),

ϕτ(a) = ϕτ(b)ϕ(cba) = ϕ(b)ϕ(c)ϕ(b) = ϕ(b)ϕ(c).
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Thus ϕτ is constant in this case, as well. So we can also assume that ϕ(a)→T ϕ(b).

Finally, if ϕ(c)←T ϕ(a), then

ϕτ(c) = ϕ(c)ϕ(b)ϕ(a)ϕ(c) = ϕ(b)ϕ(a)ϕ(c) = ϕ(a)ϕ(c) = ϕ(a),

ϕτ(b) = ϕτ(c)ϕ(cb) = ϕ(a)ϕ(c)ϕ(b) = ϕ(a)ϕ(b) = ϕ(a),

ϕτ(a) = ϕτ(b)ϕ(cba) = ϕ(a)ϕ(c)ϕ(b)ϕ(a) = ϕ(a).

Thus ϕτ is constant, once again. This proves that ϕτ is constant whenever ϕ(x)←T

ϕ(y) for some edge x→G y.

The other alternative is that ϕ(x)→T ϕ(y) for all edges x→G y. Then ϕτ = ϕ,

because

ϕτ(c) = ϕ(c)ϕ(b)ϕ(a)ϕ(c) = ϕ(c),

ϕτ(b) = ϕτ(c)ϕ(cb) = ϕ(c)ϕ(b) = ϕ(b),

ϕτ(a) = ϕτ(b)ϕ(cba) = ϕ(b)ϕ(a) = ϕ(a).

Finally, statement (3) holds, because all variables a, b and c occur in τ(a), τ(b)

and τ(c).

Claim 2. Let G be the union of two triangular graphs G0 and G1 with a common

edge a→ b, a, b ∈ G0 ∩G1. By the induction hypothesis, there are endomorphisms τ̂i

(i = 0, 1) of F(Gi) satisfying statements (1)− (3) for Gi. Let τi be the endomorphism

of F(G) defined by

τi(x) =















τ̂i(x) if x ∈ Gi,

x if x ∈ G \Gi.

Then τ = τ0τ1τ0τ1τ0 satisfies statements (1)− (3) for G.

Let ϕ be a homomorphism of F(G) into a tournament T. Notice that τ̂i = τi|F (Gi)

35



for i = 0, 1, by definition. To check statement (1), assume that ϕ(x)→T ϕ(y) for all

edges x →G y. Then, by the induction hypothesis, ϕ|F (Gi)τ̂i(x) = ϕ|F (Gi)(x) for all

x ∈ Gi, i = 0, 1. Thus ϕτi(x) = ϕ(x) for all x ∈ G, and therefore ϕτi = ϕ. Hence

ϕτ = ϕτ0τ1τ0τ1τ0 = ϕτ1τ0τ1τ0 = · · · = ϕ, as claimed.

To check statement (2), first assume that ϕ(x)→T ϕ(y) for all edges x→G0 y, but

ϕ(x)←T ϕ(y) for some edge x→G1 y. By the same argument as above, ϕτ0 = ϕ, so

we need to show that ϕτ1τ0τ1τ0 is constant. By the induction hypothesis, ϕ|F (G1)τ̂1 is

a constant s-valued homomorphism of F(G1) for some element s ∈ T . In particular,

ϕτ1(a) ←
T ϕτ1(b) for the common edge a →G0 b. Now we can apply the induction

hypothesis again for the homomorphism ϕτ1|F (G0) and endomorphism τ̂0 of F(G0),

and obtain that ϕτ1|F (G0)τ̂0 is a constant t-valued homomorphism of F(G0) for some

t ∈ T . We argue that {ϕτ1τ0(x) : x ∈ G } = {s, t}. For x ∈ G0, ϕτ1τ0(x) =

ϕτ1|F (G0)τ̂0(x) = t. On the other hand, ϕτ1τ0(x) = ϕτ1(x) = ϕ|F (G1)τ̂1(x) = s for

all x ∈ G \ G0. By statement (3) of the induction hypothesis, ϕτ1τ0|F (G1)τ̂1 is the

constant st-valued homomorphism of F(G1). Thus ϕτ1τ0τ1(x) = st for all x ∈ G1, and

ϕτ1τ0τ1(x) = t for all x ∈ G \ G1. Hence {ϕτ1τ0τ1(x) : x ∈ G } = {st, t}. Applying

the induction hypothesis, for the last time, for the homomorphism ϕτ1τ0τ1|F (G0) and

endomorphism τ̂0, we conclude that ϕτ1τ0τ1τ0(x) = st for all x ∈ G. This finishes the

proof of statement (2) when ϕ(x)→T ϕ(y) for all edges x→G0 y, but ϕ(x)←T ϕ(y)

for some edge x →G1 y. The case when ϕ(x) ←T ϕ(y) for some edge x →G1 y is

proved similarly. But this time we get that ϕτ0τ1τ0τ1 is already constant.

Finally, τ clearly satisfies statement (3).

Definition 5.7. We say that an algebra A ∈ T has a spanning triangular graph G,

if G is triangular, defined on the whole set A, and →G ⊆ →A.

Lemma 5.8. Every finite, nontrivial strongly connected tournament has a spanning

triangular graph.
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Proof. Let T be a finite, nontrivial strongly connected tournament. We prove the

lemma by induction on the number of elements of T. The smallest nontrivial strongly

connected tournament is the three element cycle, which has a spanning triangular

graph.

Choose an element a ∈ T and consider the tournament T \ {a}. Let C0, . . . , Ck−1

be the strongly connected components of T \ {a}. Clearly, for each pair of indices

0 ≤ i < j < k, either b →T c for all b ∈ Ci and c ∈ Cj, or c →
T b for all b ∈ Ci

and c ∈ Cj. We will use the notation Ci →
T Cj in the former, and Cj →

T Ci in the

latter case. This defines a k-element tournament on the set {C0, . . . , Ck−1}. Notice

that this tournament must be a chain. Without loss of generality, we can assume that

C0 →
T · · · →T Ck−1.

Assume that k = 1. Then, the tournament C0 is nontrivial, and by the induction

hypothesis, C0 has a spanning triangular graph G. Since T is strongly connected,

there are elements b, c ∈ C0 such that c →T a →T b. Let b = b0 →
G b1 →

G · · · →G

bt−1 = c be a path in C0 with edges from G. Since a →T b0 and bt−1 →
T a, there

exists an index j < t − 1 such that a →T bj →
G bj+1 →

T a. Thus the graph

〈T ;→G ∪ {a→ bj → bj+1 → a}〉 is a spanning triangular graph of T.

Now assume that k > 1. Since T is strongly connected, there exist elements

b ∈ C0 and c ∈ Ck−1 such that c→T a→T b. Since C0 →
T Ck−1, we have b→T c, as

well. We are going to build a spanning triangular graph of T by finding triangular

subgraphs of →T which have a common edge with the triangle a →T b →T c →T a,

and cover all elements of T \ {a}. For the elements d ∈ C1 ∪ · · · ∪ Ck−2 we can take

the triangles a→T b→T d→T a or a→T d→T c→T a.

For the elements of C0, we consider two cases. If a→
T d for all d ∈ C0, then we can

take the triangles a→T d→T c→T a, once again. If d→T a for some d ∈ C0, then we

can argue similarly to the case k = 1, as follows. By the induction hypothesis, C0 has

a spanning triangular graph G. Now we can find a path b = b0 →
G · · · →G bt−1 = d
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in C0. Since a →T b0 and bt−1 →
T a, there exists an index j < t − 1 such that

a→T bj →
T bj+1 →

T a. Then the graph

〈C0 ∪ {a, c};→
G ∪ {a→ bj → bj+1 → a} ∪ {a→ bj → c→ a}〉

is a triangular subgraph of →T, have a common edge with a→T b→T c→T a, and

covers all elements of C0.

Finally, a similar argument works for the elements of Ck−1, which completes the

proof.

Weakly indecomposable subdirect products

Definition 5.9. We call a subdirect product A ≤
∏

i∈I Ai of algebras weakly inde-

composable if whenever K ∪L is a partition of I such that A = πK(A)× πL(A), then

|πK(A)| = 1 or |πL(A)| = 1.

Lemma 5.10. Let A be a nontrivial, weakly indecomposable subdirect product of

finitely many strongly connected finite tournaments. Then A has a maximal spanning

triangular graph G such that for all elements x →A y →A z, if x →G y or y →G z,

then x and z are comparable in A. Consequently, every subdirect product of finitely

many strongly connected finite tournaments is strongly connected.

Proof. Let A ≤
∏

i<kTi be a nontrivial, weakly indecomposable subdirect product

of finitely many strongly connected finite tournaments Ti. We are going to prove the

statements of the lemma by a simultaneous induction on k. In particular, assume

that all subdirect products of less than k finite, strongly connected tournaments are

strongly connected. Notice that the base of the induction trivially holds.
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Claim 1. Let G be any triangular graph on A, and define K = { i < k : πi(x) →
Ti

πi(y) for all edges x→
G y }. If |πK(A)| > 1, then x→A y for all edges x→G y.

Put L = {0, 1, . . . , k − 1} \ K. By definition, for all i ∈ L there exists an edge

x →G y such that πi(x) ←
Ti πi(y) and πi(x) 6= πi(y). Notice that if |πL(A)| = 1,

then L = ∅ and x→A y for all edges x→G y. So, to get a contradiction, assume that

|πK(A)| > 1 and |πL(A)| > 1. Let F(A) be the free algebra in T freely generated by

A, ι be the homomorphism of F(A) onto A extending the identity map of A, and τ

be the endomorphism of F(A) satisfying the statements of Lemma 5.6 for the graph

G. Hence πiιτ = πiι for all i ∈ K, and πiιτ is constant for all i ∈ L. Therefore

πKιτ = πKι and πLι is constant. Now put B = ιτ(F(A)), which is a subalgebra of A.

Then πK(B) = πKιτ(F (A)) = πKι(F (A)) = πK(A), and |πL(B)| = |πLιτ(F (A))| =

1. So far we have shown that πK(A) × {c} ⊆ A, for the unique element c ∈ πL(B).

Since |πK(A)| > 1 and |πL(A)| > 1, K 6= ∅ and L 6= ∅. Thus the algebras πK(A)

and πL(A) are subdirect products of less than k strongly connected tournaments,

and therefore, by the induction hypothesis, they are strongly connected. Then by

Lemma 5.2, A = πK(A)× πL(A). This contradicts that A is weakly indecomposable.

Claim 2. A has a spanning triangular graph.

Since A is nontrivial, there exists i < k such that |πi(A)| > 1. Then, by

Lemma 5.8, the strongly connected tournament Ti has a spanning triangular graph

Gi. Consider the projection πi : A→ Ti and the directed graph G = 〈A;π−1
i (→Gi)〉.

By Lemma 5.5, G is triangular, but is not necessarily compatible with A. We argue

that it is. Clearly, the set K, as defined in Claim 1, contains i, by the definiton of G,

and |πK(A)| > 1. Thus, x→A y for all edges x→G y.

Once we know that A has a spanning triangular graph, it has a maximal one,

with respect to the number of edges, as well. It turns out that any maximal spanning

triangular graph will satisfy the statement of the lemma.
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Claim 3. Let G be a maximal spanning triangular graph of A. Then for all elements

x→A y →A z, if x→G y or y →G z, then x and z are comparable in A.

Assume the contrary, that there are elements a, b, c ∈ A such that a→A b→A c,

a →G b or b →G c, and ac 6∈ {a, c}. Define G′ = 〈A;→G ∪ {a → b → c → a}〉. We

want to argue that the directed graph G′ is triangular. Notice that a 6= b 6= c 6= a,

because otherwise ac would be either a or c. So G′ is the union of two triangular

graphs G and a→ b→ c→ a, which have at least one common edge, a→ b or b→ c.

Now we need to show that a 6←G b 6←G c 6←G a. But this holds, because →G⊆→A,

and a 6←A b 6←A c 6←A a. Thus G′ is a triangular graph on A. Since ac 6∈ {a, c},

there exists i < k such that πi(c)→
Ti πi(a). So πi(a)→

Ti πi(b)→
Ti πi(c)→

Ti πi(a),

and therefore i ∈ K, where K = { i < k : πi(x) →
Ti πi(y) for all edges x →

G′

y }.

Now by Claim 1, x→A y for all edges x→G′

y. In particular, c→A a, contradicting

ac 6∈ {a, c}.

Claim 4. Let B be a subdirect product of at most k strongly connected finite tourna-

ments. Then B is strongly connected.

Clearly, B is a direct product
∏

i<nBi of nontrivial weakly indecomposable sub-

direct products of at most k strongly connected tournaments. By Claim 2, each Bi

has a spanning triangular graph, and therefore is strongly connected. Thus B is a

direct product of strongly connected algebras, hence strongly connected.

Triangular algebras

Definition 5.11. An algebra A ∈ T is called triangular if A is isomorphic to a

subdirect product of finitely many strongly connected finite tournaments, and A has

a maximal spanning triangular graph G such that for all elements x →A y →A z, if

x→G y or y →G z, then x and z are comparable in A.
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Lemma 5.12. Let A ∈ T be a finite, strongly connected, subdirectly irreducible al-

gebra which is a homomorphic image of a subalgebra B of a product of tournaments.

Then there exists a triangular subalgebra C ≤ B such that A is a homomorphic image

of C.

Proof. By Lemma 5.1, there exists a finite subalgebra C ≤ B such that A is a

homomorphic image of C. Choose C to be of minimal size over all such repre-

sentations. Then, using Lemma 5.1 once again, C is a subdirect product C ≤
∏

i<kTi of finitely many strongly connected finite tournaments. We argue that C

is weakly indecomposable. Take a partition K ∪ L of {0, 1, . . . , k − 1} such that

C = πK(C) × πL(C). Thus C is isomorphic to the direct product πK(C) × πL(C).

By Lemma 5.10, the subdirect products πK(C) and πL(C) are strongly connected.

Then ConC ∼= ConπK(C) × Con πL(C) by Lemma 5.3. Since A is a homomorphic

image of C, A ∼= πK(C) × πL(C)/(α × β) for some congruences α ∈ Con πK(C)

and β ∈ Con πL(C). But A is subdirectly irreducible, hence either α = 1πK(C)

or β = 1πL(C). Without loss of generality we can assume that α = 1πK(C). Thus

A ∼= πL(C)/β, which is another representation of A, because πL(C) is isomorphic

to a subalgebra of C. Then, by the minimality of |C|, we get |πL(C)| = |C| and

|πK(C)| = 1. Therefore C is weakly indecomposable. Then, by Lemma 5.10, C is

triangular, which concludes the proof.

Lemma 5.13. The congruence lattice of every triangular algebra has a unique coatom.

Proof. Let A be a triangular algebra with graph G. Consider the congruence β =
∨

{α ∈ ConA : α 6= 1A }. We will prove that β 6= 1A, that is, β is the unique

maximal congruence below 1A, by showing that β does not collapse any edge of G.

Claim 1. CgA(a, b) = 1A for all edges a→G b.

Take elements c, d and e which form a triangle c →G d →G e →G c in G. The

unary polynomial p(x) = xe maps the pair 〈c, d〉 to 〈e, d〉. Since G is a union of
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triangles connected with common edges, we can map any edge of G to any other by

some composition of unary polynomials of the above kind. Thus, CgA(a, b) contains

all edges of G. Since G is a spanning triangular graph of A, all elements of A can

be connected with G-edges. Hence, by transitivity, CgA(a, b) collapses all elements

of A.

Claim 2. Let a, b, c, d ∈ A be elements such that a →G b →G c →G a, and

CgA(c, d) 6= 1A. Then a→G b→G d→G a.

Put e = cd. Clearly, e →A c →G a, so by the definition of triangular algebras,

e and a are comparable in A. If a →A e, then 〈cca, dca〉 = 〈c, a〉 and therefore

CgA(c, d) ⊇ CgA(c, a) = 1A, which contradicts CgA(c, d) 6= 1A. So we must have

e→A a.

Now consider the edges e →A a →G b. Again, e and b must be comparable in

A. If e →A b, then 〈cc, dc〉 = 〈c, e〉 and 〈cb, dcb〉 = 〈b, e〉, and therefore CgA(c, d) ⊇

CgA(c, e) ∨ CgA(b, e) ⊇ CgA(c, b) = 1A. This is again a contradiction, thus b →A e.

At this point we know that a →G b →A e →A a. The elements a, b and e form a

triangle in A, and this triangle has a common edge with G. Thus, by the maximality

of the spanning triangular graph G, we get a→G b→G e→G a.

Since b→G e→A d, the elements b and d are comparable in A. If d →A b, then

〈cbe, dbe〉 = 〈b, e〉 and therefore CgA(c, d) ⊇ CgA(b, e) = 1A, which is a contradiction.

Thus b→A d.

Finally, consider the edges a →G b →A d. Once again, a and d must be compa-

rable. If a →A d, then 〈ca, da〉 = 〈c, a〉 and therefore CgA(c, d) ⊇ CgA(c, a) = 1A,

which is a contradiction. Thus d →A a. Now we know that a →G b →A d →A a,

and by the maximality of G we conclude that a→G b→G d→G a.

Claim 3. β 6= 1A

Take any triangle a →G b →G c →G a of G, and assume that 〈c, a〉 ∈ β. Then

42



there exist elements c = d0, d1, . . . , dk−1 = a of A such that CgA(di, di+1) 6= 1A for all

i < k − 1. By applying the previous claim repeatedly, we get a →G b →G di →
G a

for all i < k. For i = k − 1 this gives a →G a, which clearly cannot happen in a

triangular graph. Hence 〈c, a〉 6∈ β, and therefore β 6= 1A.

The largest congruence of triangular algebras

Lemma 5.14. Let A be a triangular algebra and β be its largest congruence below

1A. Then A/β is a simple tournament. Moreover, a→A b whenever a/β 6= b/β and

a/β →A/β b/β.

Proof. We argue that for all pairs of elements 〈a, b〉 ∈ 1A \β, a and b are comparable.

Since β is the largest congruence below 1A, CgA(a, b) = 1A. Recall that A is a

subdirect product A ≤
∏

i<kTi of tournaments Ti. Define

K = { i < k : πi(a)→
Ti πi(b) },

L = { i < k : πi(a)←
Ti πi(b) }

and denote by ηK and ηL the kernels of the projections πK and πL of A, respectively.

We argue that a ηK ab. Clearly, πi(a) = πi(a)πi(b) = πi(ab) for all i ∈ K. So,

πK(a) = πK(ab) and therefore a ηK ab. Similarly, we get ab ηL b. Now

1A = CgA(a, b) = CgA(a, ab) ∨ CgA(ab, b) ≤ ηK ∨ ηL,

thus 1A = ηK ∨ ηL. This implies that either ηK = 1A or ηL = 1A, because ConA

has a unique coatom. Without loss of generality, we can assume that ηK = 1A. In

particular, a ηK b, so that πi(a) = πi(b) for all i ∈ K. Hence L = {0, 1, . . . , k − 1},

and therefore a←A b.
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Since β ≺ 1A, A/β is simple. Take a pair a/β, b/β of distinct elements of A/β.

Then 〈a, b〉 6∈ β, so that ab ∈ {a, b} by the first part of the lemma. Thus a/β · b/β ∈

{a/β, b/β}, and therefore A/β is a tournament.

To check the second part of the lemma, take elements a, b ∈ A such that a/β 6= b/β

and a/β →A/β b/β. Then 〈a, b〉 6∈ β, and therefore ab ∈ {a, b}. But ab/β = a/β, thus

we must have a→A b.

Lemma 5.15. Let A be a triangular algebra and β be its largest congruence below

1A. Denote the induced subalgebras of A on the blocks of β by Bi, i < k. Then

ConA ∼= (ConB0 × · · · × ConBk−1) ⊕ 1, via the isomorphism which maps each

congruence α ≤ β to 〈α ∩B2
0 , . . . , α ∩B

2
k−1〉.

Proof. Because of the idempotent law, each block of β is a subuniverse of A. Since

β is the unique coatom of ConA, we need to show that there exists an isomorphism

λ between the interval [0A, β] of ConA and ConB0 × · · · × ConBk−1. Given a

congruence α ≤ β, define

λ(α) = 〈α ∩B2
0 , . . . , α ∩B

2
k−1〉.

Clearly, α ∩ B2
i ∈ ConBi for all i < k, and the mapping λ is order preserving. As

α ≤ β, λ is one-to-one. We need to check that λ is onto, as well. Given congruences

αi ∈ ConBi for i < k, define

α =
⋃

i<k

αi.

Clearly, λ(α) = 〈α0, . . . , αk−1〉. To check that α ∈ ConA, take a pair 〈x, y〉 ∈ α of

elements and an element z ∈ A. We argue that 〈xz, yz〉 ∈ α, which will conclude the

proof. Clearly, x, y ∈ Bi and z ∈ Bj for some i, j < k. If i = j, then 〈xz, yz〉 ∈ αi ⊆ α.

On the other hand, if i 6= j, then z is comparable to both x and y, by Lemma 5.14. In

fact, either x, y →A z or x, y ←A z, because xz β yz. Hence, either 〈xz, yz〉 = 〈x, y〉

or 〈xz, yz〉 = 〈z, z〉, and we get 〈xz, yz〉 ∈ α.

44



Theorem 5.16. Let S be a finite, strongly connected subdirectly irreducible algebra

in T . Then the following hold.

(1) ConS has a unique coatom γ.

(2) S/γ is a simple tournament.

Moreover, if γ 6= 0S, then

(3) γ has exactly one nontrivial block C.

(4) For all x ∈ S \ C, either x→S y for all y ∈ C, or x←S y for all y ∈ C.

(5) S|C is subdirectly irreducible.

Consequently, if S is not a tournament, then it has a proper subdirectly irreducible

subalgebra which is again not a tournament.

Proof. By Lemma 5.12, S ∼= A/α for some triangular algebra A and congruence

α ∈ ConA. According to Lemma 5.13, ConA has a unique coatom β. Clearly,

α ≤ β. Consequently, the congruence γ = β/α is the unique coatom of ConS, and

S/γ ∼= A/β. Hence S/γ is a simple tournament by Lemma 5.14.

Now assume that γ 6= 0S, that is, α 6= β. Let B0, . . . ,Bk−1 be the induced subal-

gebras of A on the blocks of β. By Lemma 5.15, ConA is isomorphic to (ConB0 ×

· · · × ConBk−1) ⊕ 1 via the isomorphism which maps α to 〈α ∩ B2
0 , . . . , α ∩ B

2
k−1〉.

Since S is subdirectly irreducible, ConS has a unique atom. Therefore, α is meet

irreducible in ConA. Consequently, α ∩B2
i < 1Bi

for at most one i < k. But α < β,

so there exists a unique j < k such that α ∩ B2
j < 1Bj

. Notice that the blocks of γ

are the sets Bi/α. Subsequently, γ has a unique nontrivial block C = Bj/α, which

proves statement (3).

Denote byC the algebra S|C . Since α∩B
2
i = 1Bi

for all i 6= j, [α, β] ∼= [α∩B2
j , 1Bj

].

On the other hand, [α ∩ B2
j , 1Bj

] ∼= [0C, 1C]. But α is meet irreducible in [α, β],
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therefore C is subdirectly irreducible. This proves statement (5). Now notice that

statement (4) follows from Lemma 5.14.

Finally, assume that S is not a tournament. Then γ 6= 0S, by (2). If S|C is a

tournament, then by (4), S is a tournament, which is a contradiction. Therefore S|C is

a proper subdirectly irreducible subalgebra of S which is again not a tournament.

Subdirectly irreducibles are tournaments

Theorem 5.17. Every subdirectly irreducible algebra in T is a tournament.

Proof. First we show that every finite subdirectly irreducible member of T is a tour-

nament. To get a contradiction, take a minimal finite subdirectly irreducible algebra

S ∈ T which is not a tournament. By Theorem 4.11, S must be strongly connected.

Then by Theorem 5.16, S has a proper subdirectly irreducible subalgebra which is

again not a tournament. This contradicts the minimality of S.

Since T is locally finite, every subdirectly irreducible member S of T can be em-

bedded into an ultraproduct of finite subdirectly irreducible algebras which are ho-

momorphic images of finite subalgebras of S, by a result of J. B. Nation, Lemma 10.2

of [8]. The fact that a groupoid is a tournament can be expressed by the universal

sentence xy = yx ∈ {x, y}. Since all finite subdirectly irreducible members ofT sat-

isfy this sentence, and ultraproducts and subalgebras preserve all universal sentences,

it follows that all subdirectly irreducible members of T are tournaments.
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CHAPTER VI

CONSEQUENCES

Immediate consequences

Theorem 5.17 answers affirmatively the conjecture of R. McKenzie posted in [13]

and [14]. This result has many interesting consequences. Among others, we present

a representation theorem for finite subdirectly irreducible tournaments modulo finite

simple tournaments, which nicely extends Theorem 14 of [13].

Corollary 6.1. The following hold:

(1) Every algebra in T is a subdirect product of subdirectly irreducible tournaments.

(2) The quasi-variety generated by tournaments is T .

(3) For every quasi-equation φ which is satisfied in all tournaments, there exists a

finite set Γ of equations of T such that Γ ` φ.

Proof. Every algebra in T is a subdirect product of subdirectly irreducible members

of T . Since all subdirectly irreducible members of T are tournaments, T is a subclass

of the quasi-variety generated by tournaments. The other inclusion trivially holds.

The class T is a variety, so it is axiomatized by a set Σ of equations; hence Σ ` φ

and, consequently, Γ ` φ for a finite subset Γ of Σ.

The blow-up representation of subdirectly irreducibles

Definition 6.2. Let T,S be tournaments and s ∈ S. Define a tournament A on the

disjoint union A = T ∪ S \ {s} by
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(1) for all a, b ∈ T , a→A b if and only if a→T b,

(2) for all a, b ∈ S \ {s}, a→A b if and only if a→S b,

(3) for all a ∈ T and b ∈ S \ {s}, a→A b if and only if s→S b.

Clearly, A|T = T, and A|{t}∪S\{s} ∼= S for all t ∈ T . We will denote A by T ? s ? S.

Lemma 6.3. Let T be a subdirectly irreducible tournament, S be a strongly connected,

simple tournament, and s ∈ S. Put A = T ? s ? S. Then the following hold.

(1) A is strongly connected.

(2) γ = T 2 ∪ idA is the largest congruence of A below 1A.

(3) A|T ∼= T.

(4) A/γ ∼= S under an isomorphism sending T to s.

(5) ConA ∼= ConT⊕ 1.

(6) A is subdirectly irreducible.

Proof. Recall that A|{t}∪S\{s} ∼= S for all t ∈ T . Since S is strongly connected, ∼A

collapses all elements of {t} ∪ S \ {s}, for all t ∈ T . Hence ∼A collapses T ∪ S \ {s},

that is, A is strongly connected.

Define γ = T 2∪idA. Clearly, γ ∈ ConA. We argue that γ is the largest congruence

of A below 1A. Take a congruence α ∈ ConA such that α 6≤ γ, and a pair of distinct

elements 〈a, b〉 ∈ α \ γ. We can assume that a ∈ S \ {s}. If b ∈ S \ {s}, then for

all t ∈ T , CgA(a, b) collapses all elements of {t} ∪ S \ {s}, because S is simple and

A|{t}∪S\{s} ∼= S. This shows that α ⊇ CgA(a, b) = 1A. On the other hand, if b ∈ T ,

then CgA(a, b) collapses all elements of {b} ∪S \ {s}. In particular, it collapses 〈a, c〉

for some c ∈ S \ {s, a}. Consequently, α ⊇ CgA(a, b) ⊇ CgA(b, c) = 1A, once again.

The rest is obvious.
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Denote by 2 and 3 the two- and three-element chains defined on the sets {0, 1}

and {0, 1, 2} with 0 → 1 and 0 → 1 → 2, respectively. Let T be a tournament.

Observe that T ? 0 ? 2 is the tournament obtained from T by adding a new unit

element (an element 1 such that t→ 1 for all t ∈ T ). Similarly, T ? 1 ? 2 is obtained

from T by adding a new zero element (an element 0 such that 0 → t for all t ∈ T ),

and T ? 1 ? 3 is obtained from T by adding both a new unit and a new zero element.

Given two bounded lattices K and L, the lattice K ¢ L is the factor lattice of

K ⊗ L by the congruence with a single nontrivial block {1K, 0L} where 1K is the

largest element of K and 0L is the smallest element of L. Thus, 2 ¢ 2 ∼= 3, for

example.

Lemma 6.4. Let T be a strongly connected, subdirectly irreducible tournament, and

〈s,S〉 be either 〈0,2〉 or 〈1,2〉 or 〈1,3〉. Put A = T ? s ? S. Then the following hold.

(1) A is not strongly connected.

(2) ∼ has a single nontrivial block T .

(3) A|T ∼= T.

(4) A/∼ ∼= S under an isomorphism sending C to s.

(5) ConA ∼= ConT¢ ConS.

(6) A is subdirectly irreducible.

Proof. It is easy.

Definition 6.5. Given an integer n ≥ 0, tournaments S0, . . . ,Sn and elements si ∈

Si, 0 < i ≤ n, we define the blow-up composition S0 ? s1 ?S1 ? · · · ? sn ?Sn inductively

by

S0 ? s1 ? · · · ? sn ? Sn =















S0 if n = 0,

(S0 ? s1 ? · · · ? Sn−1) ? sn ? Sn if n > 0.
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It is not hard to see that (S0?s1?S1)?s2?S2
∼= S0?s1?(S1?s2?S2) for all tournaments

S0,S1,S2 and all elements s1 ∈ S1 and s2 ∈ S2. Thus the arrangement of parentheses

according to which the blow-up composition is computed does not matter.

Theorem 6.6. Every finite subdirectly irreducible tournament can be uniquely repre-

sented as S0 ? s1 ? S1 ? · · · ? sn ? Sn, where:

(1) Each Si is either a two- or three-element chain or a finite, strongly connected

simple tournament.

(2) There is no index i < n such that both Si and Si+1 are chains.

(3) si ∈ Si for all 0 < i ≤ n.

(4) S0 is not a three-element chain. If Si is a three-element chain, then si is the

middle element of Si.

Moreover, S0 ? s1 ? · · · ? sn ? Sn is a finite subdirectly irreducible tournament for all

choices of S0, . . . ,Sn and s1, . . . , sn for which (1)− (4) hold.

Proof. Throughout this proof we consider only finite algebras. Let A be a subdirectly

irreducible tournament.

Claim 1. IfA is simple, then eitherA ∼= 2, orA is strongly connected. Consequently,

A can be uniquely represented as the blow-up composition A of length 1.

Consider the congruence ∼ of A from Lemma 4.2. If ∼ = 0A, then A is a

simple semilattice, therefore A ∼= 2. On the other hand, if ∼ = 1A, then A is

strongly connected. Notice that this representation is unique, because all blow-up

compositions of length more than one are not simple by Lemmas 6.3 and 6.4.

Claim 2. If A is not simple and is strongly connected, then A can be uniquely rep-

resented as T ? s ? S where T is a subdirectly irreducible tournament, S is a strongly

connected simple tournament, and s ∈ S.

50



By Theorem 5.16, A has a largest congruence γ, A/γ is a strongly connected

simple tournament, γ has a unique nontrivial block C, A|C is subdirectly irreducible,

and A ∼= A|C ? C ?A/γ. On the other hand, for every representation A ∼= T ? s ? S,

A|C ∼= T and A/γ ∼= S under an isomorphism sending C to s, by Lemma 6.3.

Claim 3. If A is not simple and not strongly connected, then A can be uniquely

represented as either T?0?2 or T?1?2 or T?1?3, where T is a strongly connected

subdirectly irreducible tournament.

Consider the congruence ∼ of A. Since A is a tournament, A/∼ is a chain. If

∼ = 0A, then A is a subdirectly irreducible chain, that is, A ∼= 2. This contradicts

the assumption that A is not simple, therefore ∼ has at least one nontrivial block.

Clearly, for every block B of ∼, B2 ∪ idA is a congruence of A, and the meet of any

pair of such congruences is 0A (if they are distinct congruences). This shows that ∼

has exactly one nontrivial block C, and as a consequence, A ∼= A|C ? C ?A/∼.

If the chain A/∼ has more than 3 elements, then there exists a pair of elements

a, b ∈ A\C such that b covers a. Then CgA(a, b) = {a, b}
2∪ idA, and ∼ ∩CgA(a, b) =

0A, contradicting that A is subdirectly irreducible. Consequently, A/∼ is either a

two- or three-element chain. If A/∼ ∼= 3 and C is not the middle element, then we

can choose a cover a, b ∈ A \C yielding a contradiction, once again. This shows that

〈C,A/∼〉 is isomorphic to either 〈0,2〉 or 〈1,2〉 or 〈1,3〉.

From Lemma 6.4 and from the above description it follows that this representation

is unique.

Now the first statement of the theorem follows from the previous claims by induc-

tion on the size of A. The second part follows from Lemmas 6.3 and 6.4.

Definition 6.7. Given a finite subdirectly irreducible tournament A, the blow-up

representation of A is the unique blow-up composition S0 ? s1 ? · · · ? sn ?Sn satisfying

(1)− (4) of Theorem 6.6.
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The hereditarily zeroless companion

Definition 6.8. Let A be a finite subdirectly irreducible tournament with blow-up

representation S0 ? s1 ? · · · ? sn ? Sn. We say that A is hereditarily zeroless if the

subsequences 1 ? 2 and 1 ? 3 do not occur in S0 ? s1 ? · · · ? sn ? Sn. The hereditarily

zeroless companion of A is the finite subdirectly irreducible tournament whose blow-

up representation is obtained from S0 ? s1 ? · · · ? sn ? Sn by removing all occurrences

of 1 ? 2, and by replacing all occurrences of 1 ? 3 with 0 ? 2.

Lemma 6.9. Let A be a finite subdirectly irreducible tournament and B be its hered-

itarily zeroless companion. Then V(A) = V(B).

Proof. The following two claims prove the lemma by induction on the length of the

blow-up representation of A.

Claim 1. Let C,D and S be tournaments, and s ∈ S. If V(C) = V(D), then

V(C ? s ? S) = V(D ? s ? S).

Since C ∈ V(D), there exist a cardinal κ, a subalgebra E of Dκ, and a congruence

ϑ of E such that E/ϑ ∼= C. Clearly, E ? s ? S is a subalgebra of (D ? s ? S)k if we

identify the elements t ∈ S \ {s} of E ? s ? S with the constant κ-tuples 〈t, t, . . . 〉 of

(D ? s ? S)κ. On the other hand, ϑ′ = ϑ ∪ idE?s?S is a congruence of E ? s ? S, and

E ? s ? S/ϑ′ ∼= C ? s ? S. This proves that V(C ? s ? S) ⊆ V(D ? s ? S). The inclusion

in the other direction holds by symmetry.

Claim 2. Let C be a nontrivial tournament. Then V(C ? 1 ? 2) = V(C) and V(C ?

1 ? 3) = V(C ? 0 ? 2).

Recall that C ? 1 ? 2 is the tournament obtained from C by adding a new zero

element. Clearly, C is a subalgebra of C ? 1 ? 2. On the other hand, C ? 1 ? 2
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is isomorphic to (C × 2)/ϑ where ϑ = (C × {0})2 ∪ idC×2. Since C is not trivial,

2 ∈ V(C), and therefore C ? 1 ? 2 ∈ V(C).

The second equality follows from the first, because C?1?3 ∼= (C?0?2)?1?2.

The following theorem, its proof and many of its consequences were inspired by

ideas of R. McKenzie in [15].

Theorem 6.10. Let A be a finite subdirectly irreducible tournament in the variety

generated by a collection K of tournaments. Then the hereditarily zeroless companion

of A is a subalgebra of a member of K.

Proof. Without loss of generality we can assume that A is hereditarily zeroless, by

Lemma 6.9. Write A as a quotient of a finite subalgebra B of a product of finitely

many tournaments in K. We argue that A can be embedded into B by induction

on the size of A. This will imply that A can be embedded into some member of K,

because A is subdirectly irreducible.

Claim 1. If A is strongly connected, then A can be embedded into B.

Assume that A is strongly connected. By Lemma 5.12, there exists a triangular

subalgebra C ≤ B such that A is a homomorphic image of C. Let α ∈ ConC

for which A ∼= C/α, and β be the largest congruence of C below 1C, which exists

by Lemma 5.13. If α = 1A, then A is trivial and A ≤ B. So assume that α ≤

β. Denote the induced subalgebras of C on the blocks of β by B0, . . . ,Bt−1. By

Lemma 5.15, [0A, β] ∼= ConB0×· · ·×ConBt−1 via the isomorphism which maps α to

〈α∩B2
0 , . . . , α∩B

2
t−1〉. Since C/α is subdirectly irreducible, α is meet irreducible and

thus α ∩ B2
i < 1Bj

for at most one i < t. First consider the case when α ∩ B2
i = 1Bi

for all i < t, that is, α = β. Take representative elements bi ∈ Bi for all i < t.

Now by Lemma 5.14, C/β is a simple tournament which is isomorphic to the induced

subalgebra of C on {b0, . . . , bt−1}.
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Now assume that α < β, that is, α ∩ B2
j < 1Bj

for a unique index j < t. Then

A′ = Bj/(α ∩ B
2
j ) is a subdirectly irreducible algebra, |A′| < |A|, and Bj ≤ B.

Using the induction hypothesis, A′ can be embedded into a subalgebra B′ ≤ Bj.

Consider the induced subalgebra C′ of C on the set B′ ∪{b0, . . . , bj−1, bj+1, . . . , bt−1}.

By Lemma 5.14, C′ is isomorphic to C/α, which concludes the proof of the claim.

Claim 2. If A is not strongly connected, then A can be embedded into B, once again.

If A ∼= 2, then A can be clearly embedded into B. So assume that A has

more than 2 elements. Consider the blow-up representation of A. Since A is not

strongly connected, A ∼= T?s?S for some strongly connected subdirectly irreducible

tournament T, a two- or three-element chain S and s ∈ S. But A is hereditarily

zeroless, so we must have S ∼= 2 and s = 0. Thus A is obtained from T by adding a

new unit element 1, and A = T ∪ {1}.

Let ϕ be a homomorphism of B onto A. Take an element u ∈ ϕ−1(1). For

each t ∈ T we can choose a representative b ∈ ϕ−1(t) such that b →B u, because

t→A 1. Denote by C the subalgebra of B generated by the set of representatives of

the elements of T . Clearly, ϕ maps C onto T. Using the induction hypothesis for T,

there exists a subalgebra D ≤ C such that T ∼= D. On the other hand, c →B u for

all c ∈ C, by Lemma 3.4, because this holds for all generators of C. In particular,

d→B u for all d ∈ D. This shows that D∪{u} is a subuniverse of B, and the induced

subalgebra is isomorphic to A.

Finitely generated subvarieties of T

Corollary 6.11. Every finitely generated subvariety of T has a finite residual bound.

Proof. Take a finitely generated subvariety V of T . Every finitely generated variety

is generated by a single finite algebra, so V = V(A) for some finite algebra A ∈ T .
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The algebra A is a subdirect product of subdirectly irreducible finite tournaments

T0, . . . ,Tk−1. Clearly, Ti ∈ V(A) for all i < k. Thus V = V(T0, . . . ,Tk−1). By The-

orem 6.10, every hereditarily zeroless companion of a finite subdirectly irreducible

member of V can be embedded into one of the tournaments T0, . . . ,Tk−1. Together

with Lemma 6.9 this implies that V has only finitely many finite subdirectly irre-

ducibles, up to isomorphism. Also, V has no infinite subdirectly irreducible members,

by Theorem §V 3.8 of [1]. Hence V has a finite residual bound.

Corollary 6.12. Every finitely generated subvariety of T is finitely based. Conse-

quently, every finite tournament is finitely based.

Proof. The variety T is locally finite by Corollary 3.2, and congruence meet-semi-

distributive by Theorem 3.7. Every finitely generated subvariety V of T has a finite

residual bound by Corollary 6.11. Then, by the main theorem of [21], V is finitely

based.

The lattice of subvarieties of T

Let Z be a representative set of hereditarily zeroless, finite subdirectly irreducible

tournaments, that is, a set such that each hereditarily zeroless finite subdirectly irre-

ducible tournament is isomorphic to exactly one member of Z. Clearly, the relation≤,

defined by A ≤ B if and only if A can be embedded into B, is a partial order on Z.

Corollary 6.13. The lattice of subvarieties of T is isomorphic to the lattice of

downsets of Z.

Proof. Let V be a subvariety of T . Clearly, V ∩ Z is a downset of Z. On the other

hand, since V is locally finite, V is generated by its finite subdirectly irreducible

members. Then by Lemma 6.9, V is generated by V ∩ Z. This shows that ϕ : V 7→

V ∩ Z is a one-to-one mapping of the set of subvarieties of T to the set of downsets
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of Z. It is not hard to see that ϕ is onto, as well, by Theorem 6.10. Finally, ϕ

preserves intersection, which proves that ϕ is a lattice isomorphism.

Corollary 6.14. The lattice of subvarieties of T is completely distributive. Every

completely join irreducible subvariety of T is generated by a unique (up to isomor-

phism), hereditarily zeroless, finite subdirectly irreducible tournament.

Proof. We use Corollary 6.13. Clearly, the lattice of downsets of any partially ordered

set is completely distributive, and the completely join irreducible elements correspond

to the principal downsets. The downset generated by a hereditarily zeroless, finite

subdirectly irreducible tournament A ∈ Z corresponds to the completely join irre-

ducible subvariety of T generated by A.

Corollary 6.15. The lattice 2ω can be embedded into the lattice of subvarieties of T .

Consequently, T has uncountably many subvarieties.

Proof. By Theorem 3.13, there exists an infinite sequence of finite simple tournaments

An (n ≥ 8) such that no one is isomorphic to a subalgebra of some other one. Since

each An is simple and has no zero and no unit element, An is hereditarily zeroless.

Then the varieties V(S) generated by all subsets S ⊆ {A8,A9, . . . } are pairwise

distinct by Theorem 6.10.

Corollary 6.16. Let A be a hereditarily zeroless, finite subdirectly irreducible tour-

nament. Then A is a splitting algebra in T . Consequently, there exists an equation ε

such that for all tournaments T, A can be embedded into T if and only if ε fails in T.

Proof. The variety V = V(A) is a completely join irreducible subvariety of T . Clearly,

V ∩Z is the principal downset of Z generated by A. Let W be the variety generated

by the downset {B ∈ Z : A 6≤ B }. Clearly, W is a completely meet irreducible

subvariety of T , and the pair V ,W splits the lattice of subvarieties of T . Now there

exists a set Σ of equations such that W is the class of all algebras in T satisfying
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all equations in Σ. Since W is completely meet irreducible, there exits an equation

ε ∈ Σ such that W is the class of all algebras in T satisfying ε. Now for all algebras

B ∈ T , either B ∈ V or else B satisfies the equation ε.

Maximal spanning triangular subgraphs

To fully understand the lattice of subvarieties of T , we need to understand the

poset Z of hereditarily zeroless, finite subdirectly irreducible tournaments, by Corol-

lary 6.14. As the first step in this direction we need to know more about the structure

of simple tournaments. The following results are due to R. McKenzie, and are repro-

duced from [16].

Theorem 6.17. A tournament has at most one maximal spanning triangular sub-

graph.

Proof. Clearly, two maximal triangular subgraphs are either equal, or have no edge in

common. So to prove this theorem, we assume that T is a tournament with maximal

spanning triangular graphs G0,G1 which have no edges in common. “Spanning”

means that every element of T is incident with an edge of G0 and with an edge of

G1. We work toward a contradiction.

First, we work toward demonstrating that there are no two vertex-disjoint tri-

angles T0,T1 with Ti ⊆ Gi. Suppose, to the contrary that T0,T1 are such. By

a “homogeneous vertex” of the graph T0 ∪ T1 we mean a vertex x ∈ Ti, where

{i, j} = {0, 1}, such that either x→T Tj or else Tj →
T x.

Claim 1. The graph T0 ∪T1 has a homogenous vertex.

To see this, let Ti consist of the vertices and edges ai →
Gi bi →

Gi ci →
Gi ai.

We assume that there are no homogeneous vertices and work to a contradiction.

Clearly, we can assume, then, that b1 →
T a0 →

T a1 →
G1 b1. Thus by maximality,
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b1 →
G1 a0 →

G1 a1. Then if b1 →
G1 a0 →

G0 b0 →
T b1, it follows that this triangle

belongs both to G0 and G1, a contradiction. Hence it must be that b1 →
T b0. Then

b1 → a0, b1 → b0 imply that c0 → b1, else b1 is homogeneous. Now we have the triangle

b1 →
T b0 →

G0 c0 →
T b1 putting all these edges in G0; and by the same argument

as above, we must have c0 →
T c1. Since c0 → b1, c0 → c1, then a1 → c0 because c0

is not homogeneous. The triangle c0 →
T c1 →

G1 a1 →
T c0 puts all these edges in

G1, and as above, forces a1 → a0. Note now that we began with the assumption that

a0 →
T a1. This contradiction proves the claim.

Claim 2. Suppose that {i, j} = {0, 1} and that x→Ti y. Then Tj →
T x implies y is

homogeneous; while y →T Tj implies x is homogeneous.

Indeed, suppose that Tj → x but that y is not homogeneous. Then we have

some u →Tj v with v →T y →T u, forming a triangle. We also have the triangle

u →T x →Gi y →T u. The first triangle must have all its edges in Gj, the second

has all its edges in Gi, by maximality. Then the edge y → u belongs to both G0 and

G1, a contradiction. The proof that y →T Tj implies x is homogeneous, is entirely

analogous.

Claim 3. For the vertex disjoint triangles Ti ⊆ Gi, we must have either T0 →
T T1,

T1 →
T T0, or for some {i, j} = {0, 1}, there is x→

Ti y such that

Tj →
T x→Ti y →T Tj .

Claim 3 follows trivially from Claims 1 and 2.

Continuing our proof that the vertex disjoint triangles Ti ⊆ Gi cannot exist,

assume now that the second alternative in Claim 3 holds, say

T1 →
T x→T0 y →T T1 .
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The vertex x belongs to some triangle in G1 (since G1 is spanning). In fact, by the

definition of triangular graph, x belongs to a triangle S in G1 such that there is a

sequence of triangles T1 = S1, . . . ,Sn = S in G1 such that Si, Si+1 have an edge in

common, for each i. Now it is easy to show, inductively, that {x, y} is disjoint from

the vertex set of each Si and in fact, y →T Si →
T x for all i. Since x belongs to

the vertex set of Sn, this gives y →T x, which is a contradiction. Thus the second

alternative in Claim 3 can never hold for a pair of vertex disjoint triangles, one in

G0, the other in G1.

So now assume that Ti ⊆ Gi are vertex disjoint, and say T0 →
T T1. Again, where

x →T0 y →T0 z →T0 x, there is a sequence of triangles T1 = S1, . . . ,Sn in G1 such

that x is a vertex of Sn and Si,Si+1 have an edge in common, for each i. Suppose

we have shown inductively, for a certain i < n, that Si is vertex-disjoint from T0 and

that T0 → Si. If Si+1 is vertex-disjoint from T0, then since Si+1 has a vertex u with

T0 → u, it follows that T0 → Si+1 (by the fact that the second alternative in Claim

3 cannot hold, as we’ve shown above). On the other hand, if the vertex in Si+1 \ Si

belongs to T0, then for one of the two vertices u ∈ Si ∩ Si+1, we do not have T0 → u,

contradicting our assumption that T0 → Si. The conclusion is that T0 → Si and

Si ∩ T0 = ∅ is forced for all i. Since x is a vertex of Sn, this of course is the final

contradiction.

So we have shown that every pair of triangles, consisting of one included in G0

and one included in G1, must have a vertex in common. Obviously, since G0 and G1

have no edge in common, and each contains a triangle, then |T | ≥ 4. Thus by the

definition of triangular graph, there must exist two distinct triangles T1,T2 contained

in G1 which have an edge in common. Say Ti consists of a → b → ci, i ∈ {1, 2}.

There is a triangle T0 in G0 which includes the vertex c1. Since T0 can have only

the one vertex in common with T1, then it has neither a nor b. Since T0 must have

a vertex from T2, then T0 consists of, say c1 → c2 → c3 → c1. If c3 → b then the
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triangle b→ c2 → c3 → b has an edge in commong with T0 and an edge in common

with T2, so that it must be included in G0 ∩G1, a contradiction. Thus b→T c3.

If a → c3, then the triangle c3 → c1 → a → c3 has an edge in common with T0

and an edge in common with T1, so that we have the same contradiction.

Thus, finally, we have the triangle a → b → c3 → a, and it obviously is included

in G1—call this triangle T3.

Let S ⊆ G0 be any triangle of G0 having an edge in common with T0. Since

S contains some ci and must intersect Ti in exactly one vertex, it follows that a, b

are not vertices of S. Since S cannot be vertex disjoint from any of T1,T2,T3, then

S has exactly the same three vertices as T0; i.e., S = T0. Now, a quick glance at

the definition of triangular graph leads us to the conclusion that the universe of the

tournament T is just the set {c1, c2, c3}. This is the final contradiction that proves

the theorem.

Theorem 6.18. Suppose that the tournament T has maximal spanning triangular

subgraph G. Then T is simple iff every triangle in T has its edges in G and there is

no two-element subset {x, y} = E such that for all z ∈ T , E → z or z → E.

Theorem 6.19. Let T be a finite simple tournament of more than two elements, and

G be its unique maximal spanning triangular subgraph. The relation

{(x, y) : x→T y and x 6→G y and y 6→G x}

is a partial ordering of T and G consists of an assignment of directions on the (sym-

metric) incomparability graph of this ordering.

Theorem 6.20. For n ≥ 1, there is an n-element triangular tournament whose

associated partial ordering (as above) is discrete iff n 6∈ {1, 2, 4}.

Theorem 6.21. Suppose that T1 and T2 are two tournaments on the same set finite

60



T of vertices and G is a triangular graph on T which is a maximal spanning triangular

subgraph for both T1 and T2. If T1 is simple, then T1 = T2.

Proof. Let ≤1 and ≤2 be the associated partial orders. Thus for all x 6= y in T holds

precisely one of the following: x <1 y, y <1 x, x →
G y, y →G x; moreover x →T1 y

iff x <1 y or x→G y.

Now suppose that x ≺1 y, i.e., y covers x in ≤1. Since T1 is simple, there is

z ∈ T \ {x, y} such that x→T z →T y. Since x ≺1 y, then either x→G z or z →G y.

There are three cases to consider.

Case 1: x →G z →G y. In this case, if y →T2 x, then the T2 triangle consisting

of x, z, y, together with x →G z, forces y →G x, contradicting that x →T1 y. Hence

we conclude that in this case, x→T2 y.

Case 2: x →G z <1 y. Again, suppose that y →T2 x. Since it is not the case

that y →G x, then y, x, z does not constitute a T2-triangle, implying that we have

y <2 z. Now there exists an element a making a triangle a→G x→G z →G a. Now

y ≤2 z →G a implies y →T2 a, while a →G x ≤1 y implies a →T1 y. Obviously,

a 6= y and we have that a <1 y, y <2 a. Now continuing to move through pairs

of G-triangles that share an edge, we find that every point w reachable through a

sequence of such triangles satisfies w 6= y, w <1 y, y <2 w. This is a contradiction,

because y is reachable. We conclude that x→T2 y.

Case 3: x <1 z →
G y. Here we find that either x <2 y or else y <2 x and z <2 x.

This case yields to essentially the same proof as in case 2.

Combining all cases, we find that x ≺1 y implies x <2 y. Thus it follows by

transitivity of <2 that x <1 y implies x <2 y. Since <1 and <2 have the same

pairs of incomparable elements, we conclude that <1 is identical with <2, giving that

T1 = T2.
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[11] J. Ježek, Constructions over tournaments. (to appear in Czechoslovak Math. J.)
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